586 research outputs found
Modulation of phosphofructokinase (PFK) from Setaria cervi, a bovine filarial parasite, by different effectors and its interaction with some antifilarials
<p>Abstract</p> <p>Background</p> <p>Phosphofructokinase (ATP: D-fructose-6-phosphate-1-phosphotransferase, EC 2.7.1.11, PFK) is of primary importance in the regulation of glycolytic flux. This enzyme has been extensively studied from mammalian sources but relatively less attention has been paid towards its characterization from filarial parasites. Furthermore, the information about the response of filarial PFK towards the anthelmintics/antifilarial compounds is lacking. In view of these facts, PFK from <it>Setaria cervi</it>, a bovine filarial parasite having similarity with that of human filarial worms, was isolated, purified and characterized.</p> <p>Results</p> <p>The <it>S. cervi </it>PFK was cytosolic in nature. The adult parasites (both female and male) contained more enzyme activity than the microfilarial (Mf) stage of <it>S. cervi</it>, which exhibited only 20% of total activity. The <it>S. cervi </it>PFK could be modulated by different nucleotides and the response of enzyme to these nucleotides was dependent on the concentrations of substrates (F-6-P and ATP). The enzyme possessed wide specificity towards utilization of the nucleotides as phosphate group donors. <it>S. cervi </it>PFK showed the presence of thiol group(s) at the active site of the enzyme, which could be protected from inhibitory action of para-chloromercuribenzoate (p-CMB) up to about 76% by pretreatment with cysteine or β-ME. The sensitivity of PFK from <it>S. cervi </it>towards antifilarials/anthelmintics was comparatively higher than that of mammalian PFK. With suramin, the Ki value for rat liver PFK was 40 times higher than PFK from <it>S. cervi</it>.</p> <p>Conclusions</p> <p>The results indicate that the activity of filarial PFK may be modified by different effectors (such as nucleotides, thiol group reactants and anthelmintics) in filarial worms depending on the presence of varying concentrations of substrates (F-6-P and ATP) in the cellular milieu. It may possess thiol group at its active site responsible for catalysis. Relatively, 40 times higher sensitivity of filarial PFK towards suramin as compared to the analogous enzyme from the mammalian system indicates that this enzyme could be exploited as a potential chemotherapeutic target against filariasis.</p
Recommended from our members
Novel European free-living, non-diazotrophic Bradyrhizobium isolates from contrasting soils that lack nodulation and nitrogen fixation genes - a genome comparison
The slow-growing genus Bradyrhizobium is biologically important in soils, with different representatives
found to perform a range of biochemical functions including photosynthesis, induction of root nodules
and symbiotic nitrogen fixation and denitrification. Consequently, the role of the genus in soil ecology
and biogeochemical transformations is of agricultural and environmental significance. Some isolates of
Bradyrhizobium have been shown to be non-symbiotic and do not possess the ability to form nodules.
Here we present the genome and gene annotations of two such free-living Bradyrhizobium isolates,
named G22 and BF49, from soils with differing long-term management regimes (grassland and bare
fallow respectively) in addition to carbon metabolism analysis. These Bradyrhizobium isolates are
the first to be isolated and sequenced from European soil and are the first free-living Bradyrhizobium
isolates, lacking both nodulation and nitrogen fixation genes, to have their genomes sequenced and
assembled from cultured samples. The G22 and BF49 genomes are distinctly different with respect
to size and number of genes; the grassland isolate also contains a plasmid. There are also a number
of functional differences between these isolates and other published genomes, suggesting that this
ubiquitous genus is extremely heterogeneous and has roles within the community not including
symbiotic nitrogen fixation
- …