478 research outputs found

    Monitoring genetic population biomarkers for wastewater-based epidemiology

    Get PDF
    We report a rapid “sample-to-answer” platform that can be used for the quantitative monitoring of genetic biomarkers within communities through the analysis of wastewater. The assay is based on the loop-mediated isothermal amplification (LAMP) of nucleic acid biomarkers and shows for the first time the ability to rapidly quantify human-specific mitochondrial DNA (mtDNA) from raw untreated wastewater samples. mtDNA provides a model population biomarker associated with carcinogenesis including breast, renal and gastric cancers. To enable a sample-to-answer, field-based technology, we integrated a filter to remove solid impurities and perform DNA extraction and enrichment into a low cost lateral flow-based test. We demonstrated mtDNA detection over seven consecutive days, achieving a limit of detection of 40 copies of human genomic DNA per reaction volume. The assay can be performed at the site of sample collection, with minimal user intervention, yielding results within 45 min and providing a method to monitor public health from wastewater

    Does the vocational curriculum have a future?

    Get PDF
    In this paper, which takes the form of a dialogue, we discuss the possible directions that vocational education might take in the contemporary social, economic and technological context of the early 21st century. Taking account of the unresolved debates around vocational education internationally and future global economic demands for expertise we discuss tensions and dichotomies that continue to shape the character of vocational education by questioning definitions of the ‘vocational’ historically and in current policy. These include: the relation between ‘vocational’ and ‘academic’ pathways and the possibility of their integration, the meaning of technical education, the purpose of vocational qualifications, the role of trade unions and employers, and whether there should be a ‘skills route’ for ‘low attainers’. The principal focus is on the English context, although the discussion draws on comparative examples where relevant, as well as broader factors likely to be significant in any country

    The fate of pharmaceuticals and personal care products (PPCPs), endocrine disrupting contaminants (EDCs), metabolites and illicit drugs in a WWTW and environmental waters.

    Get PDF
    A large number of emerging contaminants (ECs) are known to persist in surface waters, and create pressure on wastewater treatment works (WWTW) for their effective removal. Although a large database for the levels of these pollutants in water systems exist globally, there is still a lack in the correlation of the levels of these pollutants with possible long-term adverse health effects in wildlife and humans, such as endocrine disruption. The current study detected a total of 55 ECs in WWTW influent surface water, 41 ECs in effluent, and 40 ECs in environmental waters located upstream and downstream of the plant. A list of ECs persisted through the WWTW process, with 28% of all detected ECs removed by less than 50%, and 18% of all ECs were removed by less than 25%. Negative mass balances of some pharmaceuticals and metabolites were observed within the WWTW, suggesting possible back-transformation of ECs during wastewater treatment. Three parental illicit drug compounds were detected within the influent of the WWTW, with concentrations ranging between 27.6 and 147.0 ng L−1 for cocaine, 35.6–120.6 ng L−1 for mephedrone, and 270.9–450.2 ng L−1 for methamphetamine. The related environmental risks are also discussed for some ECs, with particular reference to their ability to disrupt endocrine systems. The current study propose the potential of the pharmaceuticals carbamazepine, naproxen, diclofenac and ibuprofen to be regarded as priority ECs for environmental monitoring due to their regular detection and persistence in environmental waters and their possible contribution towards adverse health effects in humans and wildlife

    Research needs for optimising wastewater-based epidemiology monitoring for public health protection

    Get PDF
    This is the final version. Available on open access from IWA Publishing via the DOI in this recordData availability statement: All relevant data are included in the paper or its Supplementary Information.Wastewater-based epidemiology (WBE) is an unobtrusive method used to observe patterns in illicit drug use, poliovirus, and severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The pandemic and need for surveillance measures have led to the rapid acceleration of WBE research and development globally. With the infrastructure available to monitor SARS-CoV-2 from wastewater in 58 countries globally, there is potential to expand targets and applications for public health protection, such as other viral pathogens, antimicrobial resistance (AMR), pharmaceutical consumption, or exposure to chemical pollutants. Some applications have been explored in academic research but are not used to inform public health decision-making. We reflect on the current knowledge of WBE for these applications and identify barriers and opportunities for expanding beyond SARS-CoV-2. This paper critically reviews the applications of WBE for public health and identifies the important research gaps for WBE to be a useful tool in public health. It considers possible uses for pathogenic viruses, AMR, and chemicals. It summarises the current evidence on the following: (1) the presence of markers in stool and urine; (2) environmental factors influencing persistence of markers in wastewater; (3) methods for sample collection and storage; (4) prospective methods for detection and quantification; (5) reducing uncertainties; and (6) further considerations for public health use.Natural Environment Research Council (NERC)Engineering and Physical Sciences Research Council (EPSRC

    Wastewater monitoring for detection of public health markers during the COVID-19 pandemic: Near-source monitoring of schools in England over an academic year

    Get PDF
    Background Schools are high-risk settings for infectious disease transmission. Wastewater monitoring for infectious diseases has been used to identify and mitigate outbreaks in many near-source settings during the COVID-19 pandemic, including universities and hospitals but less is known about the technology when applied for school health protection. This study aimed to implement a wastewater surveillance system to detect SARS-CoV-2 and other public health markers from wastewater in schools in England. Methods A total of 855 wastewater samples were collected from 16 schools (10 primary, 5 secondary and 1 post-16 and further education) over 10 months of school term time. Wastewater was analysed for SARS-CoV-2 genomic copies of N1 and E genes by RT-qPCR. A subset of wastewater samples was sent for genomic sequencing, enabling determination of the presence of SARS-CoV-2 and emergence of variant(s) contributing to COVID-19 infections within schools. In total, >280 microbial pathogens and >1200 AMR genes were screened using RT-qPCR and metagenomics to consider the utility of these additional targets to further inform on health threats within the schools. Results We report on wastewater-based surveillance for COVID-19 within English primary, secondary and further education schools over a full academic year (October 2020 to July 2021). The highest positivity rate (80.4%) was observed in the week commencing 30th November 2020 during the emergence of the Alpha variant, indicating most schools contained people who were shedding the virus. There was high SARS-CoV-2 amplicon concentration (up to 9.2x106 GC/L) detected over the summer term (8th June - 6th July 2021) during Delta variant prevalence. The summer increase of SARS-CoV-2 in school wastewater was reflected in age-specific clinical COVID-19 cases. Alpha variant and Delta variant were identified in the wastewater by sequencing of samples collected from December to March and June to July, respectively. Lead/lag analysis between SARS-CoV-2 concentrations in school and WWTP data sets show a maximum correlation between the two-time series when school data are lagged by two weeks. Furthermore, wastewater sample enrichment coupled with metagenomic sequencing and rapid informatics enabled the detection of other clinically relevant viral and bacterial pathogens and AMR. Conclusions Passive wastewater monitoring surveillance in schools can identify cases of COVID-19. Samples can be sequenced to monitor for emerging and current variants of concern at the resolution of school catchments. Wastewater based monitoring for SARS-CoV-2 is a useful tool for SARS-CoV-2 passive surveillance and could be applied for case identification and containment, and mitigation in schools and other congregate settings with high risks of transmission. Wastewater monitoring enables public health authorities to develop targeted prevention and education programmes for hygiene measures within undertested communities across a broad range of use cases

    Feedback-amplified electrochemical dual-plate boron-doped diamond microtrench detector for flow injection analysis

    Get PDF
    An electrochemical flow cell with a boron‐doped diamond dual‐plate microtrench electrode has been developed and demonstrated for hydroquinone flow injection electroanalysis in phosphate buffer pH 7. Using the electrochemical generator‐collector feedback detector improves the sensitivity by one order of magnitude (when compared to a single working electrode detector). The diffusion process is switched from an analyte consuming “external” process to an analyte regenerating “internal” process with benefits in selectivity and sensitivity

    (Fluoro)quinolones and quinolone resistance genes in the aquatic environment: a river catchment perspective.

    Get PDF
    This study provides an insight into the prevalence of (fluoro)quinolones (FQs) and their specific quinolone qnrS resistance gene in the Avon river catchment area receiving treated wastewater from 5 wastewater treatment plants (WWTPs), serving 1.5 million people and accounting for 75% of inhabitants living in the catchment area in the South West of England. Ofloxacin, ciprofloxacin, nalidixic acid and norfloxacin were found to be ubiquitous with daily loads reaching a few hundred g/day in wastewater influent and tens of g/day in receiving waters. This was in contrast to other FQs analysed: flumequine, nadifloxacin, lomefloxacin, ulifloxacin, prulifloxacin, besifloxacin and moxifloxacin, which were hardly quantified. Enantiomeric profiling revealed that ofloxacin was enriched with the S-(−)-enantiomer, likely deriving from its prescription as the more potent enantiomerically pure levofloxacin, alongside racemic ofloxacin. While ofloxacin's enantiomeric fraction (EF) remained constant, high stereoselectivity was observed in the case of its metabolite ofloxacin-N-oxide. The removal efficiency of quinolones during wastewater treatment at 5 WWTPs utilising either trickling filters (TF) or activated sludge (AS), was compound and wastewater treatment process dependent, with AS providing better efficiency than TF. The qnrS resistance gene was ubiquitous in wastewater. Its removal was WWTP treatment process dependent with TF performing best and resulting in significant removal of the gene (from 28 to 75%). AS underperformed with only 9% removal in the case of activated sludge and actual increase in the gene copy number within sequencing batch reactors (SBRs). Interestingly, the data suggests that higher removal of antibiotics could be linked with high prevalence of the gene (SBR and WWTP E) and vice versa, low removal of antibiotic is correlated with lower prevalence of the gene in wastewater effluent (TF, WWTP B and D). This is especially prominent in the case of ofloxacin and could indicate that AS might be facilitating antimicrobial resistance (AMR) prevalence to higher extent than TF. Wastewater-based epidemiology (WBE) was also applied to monitor any potential misuse (e.g. direct disposal) of FQs in the catchment. In most cases higher use of antibiotics with respect to official statistics (i.e. ciprofloxacin, ofloxacin) was observed, which suggests that FQs management practice require further attention

    Monitoring occurrence of SARS-CoV-2 in school populations: A wastewater-based approach

    Get PDF
    Clinical testing of children in schools is challenging, with economic implications limiting its frequent use as a monitoring tool of the risks assumed by children and staff during the COVID-19 pandemic. Here, a wastewater-based epidemiology approach has been used to monitor 16 schools (10 primary, 5 secondary and 1 post-16 and further education) in England. A total of 296 samples over 9 weeks have been analysed for N1 and E genes using qPCR methods. Of the samples returned, 47.3% were positive for one or both genes with a detection frequency in line with the respective local community. WBE offers a low cost, non-invasive approach for supplementing clinical testing and can provide longitudinal insights that are impractical with traditional clinical testing
    • 

    corecore