742 research outputs found

    Understanding The Effects Of Stellar Multiplicity On The Derived Planet Radii From Transit Surveys: Implications for Kepler, K2, and TESS

    Get PDF
    We present a study on the effect of undetected stellar companions on the derived planetary radii for the Kepler Objects of Interest (KOIs). The current production of the KOI list assumes that the each KOI is a single star. Not accounting for stellar multiplicity statistically biases the planets towards smaller radii. The bias towards smaller radii depends on the properties of the companion stars and whether the planets orbit the primary or the companion stars. Defining a planetary radius correction factor XRX_R, we find that if the KOIs are assumed to be single, then, {\it on average}, the planetary radii may be underestimated by a factor of ⟨XR⟩≈1.5\langle X_R \rangle \approx 1.5. If typical radial velocity and high resolution imaging observations are performed and no companions are detected, this factor reduces to ⟨XR⟩≈1.2\langle X_R \rangle \approx 1.2. The correction factor ⟨XR⟩\langle X_R \rangle is dependent upon the primary star properties and ranges from ⟨XR⟩≈1.6\langle X_R \rangle \approx 1.6 for A and F stars to ⟨XR⟩≈1.2\langle X_R \rangle \approx 1.2 for K and M stars. For missions like K2 and TESS where the stars may be closer than the stars in the Kepler target sample, observational vetting (primary imaging) reduces the radius correction factor to ⟨XR⟩≈1.1\langle X_R \rangle \approx 1.1. Finally, we show that if the stellar multiplicity rates are not accounted for correctly, occurrence rate calculations for Earth-sized planets may overestimate the frequency of small planets by as much as 15−2015-20\%.Comment: 10 pages, 6 Figures, Accepted for publication in The Astrophysical Journal (Fix typo in Equation 6 of original astroph submission; correction also submitted to Journal

    Speckle interferometry at SOAR in 2019

    Full text link
    The results of speckle interferometric observations at the 4.1 m Southern Astrophysical Research Telescope (SOAR) in 2019 are given, totaling 2555 measurements of 1972 resolved pairs with separations from 15 mas (median 0.21") and magnitude difference up to 6 mag, and non-resolutions of 684 targets. We resolved for the first time 90 new pairs or subsystems in known binaries. This work continues our long-term speckle program. Its main goal is to monitor orbital motion of close binaries, including members of high-order hierarchies and Hipparcos pairs in the solar neighborhood. We give a list of 127 orbits computed using our latest measurements. Their quality varies from excellent (25 orbits of grades 1 and 2) to provisional (47 orbits of grades 4 and 5).Comment: Accepted by The Astronomical Journal. 10 pages, 5 Figures. Measurements and non-resolutions, published electronically, are available from the first author. arXiv admin note: substantial text overlap with arXiv:1905.1043

    Speckle interferometry at SOAR in 2015

    Full text link
    The results of speckle interferometric observations at the SOAR telescope in 2015 are given, totalling 1303 measurements of 924 resolved binary and multiple stars and non-resolutions of 260 targets. The separations range from 12 mas to 3.37" (median 0.17"); the maximum measured magnitude difference is 6.7 mag. We resolved 27 pairs for the first time, including 10 as inner or outer subsystems in previously known binaries, e.g. the 50-mas pair in Epsilon Cha. Newly resolved pairs are commented upon. We discuss three apparently non-hierarchical systems discovered in this series, arguing that their unusual configuration results from projection. The resolved quadruple system HIP 71510 is studied as well.Comment: 10 pages, 8 figures. Accepted for publication in AJ. The online tables are not included, available from Tokovinin on request. arXiv admin note: text overlap with arXiv:1506.0571

    Unusual explosive growth of a squamous cell carcinoma of the scalp after electrical burn injury and subsequent coverage by sequential free flap vascular connection – a case report

    Get PDF
    BACKGROUND: Squamous cell carcinomos may arise from chronic ulcerating wounds in scars, most commonly postburn scars. Tumour growth usually takes place over months to years. Localization on the scalp is a relatively rare condition. CASE PRESENTATION: This report presents the case of a 63-year-old man with chronic ulceration of a postburn scar of the scalp due to an electrical burn 58 years ago. Sudden tumour growth started within weeks and on presentation already had extended through the skull into frontal cortex. After radical tumour resection, defect was covered with a free radial forearm flap. Local recurrence occurred 6 weeks later. Subsequent wide excision including discard of the flap and preservation of the radial vessels was followed by transfer of a free latissimus dorsi muscle flap, using the radial vessels of the first flap as recipient vessels. The patient received radiotherapy post-operatively. There were no problems with flap survivals or wound healing. Due to rapidly growing recurrence the patient died 2 months later. CONCLUSION: Explosive SCC tumour growth might occur in post-burn scars after more than 50 years. As a treatment option the use of sequential free flap connections might serve in repeated extensive tumour resections, especially in the scalp region, where suitable donor vessels are often located in distance to the defect

    On the Occurrence Rate of Hot Jupiters in Different Stellar Environments

    Get PDF
    Many Hot Jupiters (HJs) are detected by the Doppler and the transit techniques. From surveys using these two techniques, however, the measured HJ occurrence rates differ by a factor of two or more. Using the California Planet Survey sample and the Kepler sample, we investigate the causes for the difference of HJ occurrence rate. First, we find that 12.8%±0.24%12.8\%\pm0.24\% of HJs are misidentified in the Kepler mission because of photometric dilution and subgiant contamination. Second, we explore the differences between the Doppler sample and the Kepler sample that can account for the different HJ occurrence rate. Third, we discuss how to measure the fundamental HJ occurrence rates by synthesizing the results from the Doppler and Kepler surveys. The fundamental HJ occurrence rates are a measure of HJ occurrence rate as a function of stellar multiplicity and evolutionary stage, e.g., the HJ occurrence rate for single and multiple stars or for main sequence and subgiant stars. While we find qualitative evidence that HJs occur less frequently in subgiants and multiple stellar systems, we conclude that our current knowledge of stellar properties and stellar multiplicity rate is too limited for us to reach any quantitative result for the fundamental HJ occurrence rates. This concern extends to ηEarth\eta_{\rm{Earth}}, the occurrence rate of Earth-like planets.Comment: 10 pages, 3 figures, 1 table, submitted to Ap

    Masses, Luminosities, and Orbital Coplanarities of the mu Orionis Quadruple Star System from PHASES Differential Astrometry

    Full text link
    mu Orionis was identified by spectroscopic studies as a quadruple star system. Seventeen high precision differential astrometry measurements of mu Ori have been collected by the Palomar High-precision Astrometric Search for Exoplanet Systems (PHASES). These show both the motion of the long period binary orbit and short period perturbations superimposed on that caused by each of the components in the long period system being themselves binaries. The new measurements enable the orientations of the long period binary and short period subsystems to be determined. Recent theoretical work predicts the distribution of relative inclinations between inner and outer orbits of hierarchical systems to peak near 40 and 140 degrees. The degree of coplanarity of this complex system is determined, and the angle between the planes of the A-B and Aa-Ab orbits is found to be 136.7 +/- 8.3 degrees, near the predicted distribution peak at 140 degrees; this result is discussed in the context of the handful of systems with established mutual inclinations. The system distance and masses for each component are obtained from a combined fit of the PHASES astrometry and archival radial velocity observations. The component masses have relative precisions of 5% (component Aa), 15% (Ab), and 1.4% (each of Ba and Bb). The median size of the minor axes of the uncertainty ellipses for the new measurements is 20 micro-arcseconds. Updated orbits for delta Equulei, kappa Pegasi, and V819 Herculis are also presented.Comment: 12 Pages, Accepted for publication in A
    • …
    corecore