9 research outputs found

    Ultrahard carbon film from epitaxial two-layer graphene

    Full text link
    Atomically thin graphene exhibits fascinating mechanical properties, although its hardness and transverse stiffness are inferior to those of diamond. To date, there hasn't been any practical demonstration of the transformation of multi-layer graphene into diamond-like ultra-hard structures. Here we show that at room temperature and after nano-indentation, two-layer graphene on SiC(0001) exhibits a transverse stiffness and hardness comparable to diamond, resisting to perforation with a diamond indenter, and showing a reversible drop in electrical conductivity upon indentation. Density functional theory calculations suggest that upon compression, the two-layer graphene film transforms into a diamond-like film, producing both elastic deformations and sp2-to-sp3 chemical changes. Experiments and calculations show that this reversible phase change is not observed for a single buffer layer on SiC or graphene films thicker than 3 to 5 layers. Indeed, calculations show that whereas in two-layer graphene layer-stacking configuration controls the conformation of the diamond-like film, in a multilayer film it hinders the phase transformation.Comment: Published online on Nature Nanotechnology on December 18, 201

    Glassy Anomalies in the Low-Temperature Thermal Properties of a Minimally Disordered Crystalline Solid

    No full text
    6 pags., 4 figs.The low-temperature thermal and transport properties of an unusual kind of crystal exhibiting minimal molecular positional and tilting disorder have been measured. The material, namely, low-dimensional, highly anisotropic pentachloronitrobenzene has a layered structure of rhombohedral parallel planes in which the molecules execute large-amplitude in-plane as well as concurrent out-of-plane librational motions. Our study reveals that low-temperature glassy anomalies can be found in a system with minimal disorder due to the freezing of (mostly in-plane) reorientational jumps of molecules between equivalent crystallographic positions with partial site occupation. Our findings will pave the way to a deeper understanding of the origin of the above-mentioned universal glassy properties at low temperature.This work has been supported by the Spanish MINECO through projects FIS2014-54734-P, FIS2014-54498-R, and MAT2014-57866-REDT and “María de Maeztu” Program for Units of Excellence in R&D (MDM-2014-0377 and the National Science Centre (Poland) Grant No. UMO-2013/08/M/ST3/00934. We also acknowledge the Generalitat de Catalunya under Project 2014SGR-581 and the Autonomous Community of Madrid through program NANOFRONTMAG-CM (S2013/MIT-2850).Peer Reviewe

    Effects of Counterion and Solvent on Proton Location and Proton Transfer Dynamics of N–H···N Hydrogen Bond of Monoprotonated 1,8-Bis(dimethylamino)naphthalene

    No full text
    corecore