227 research outputs found

    Modulus Stabilization with Bulk Fields

    Get PDF
    We propose a mechanism for stabilizing the size of the extra dimension in the Randall-Sundrum scenario. The potential for the modulus field that sets the size of the fifth dimension is generated by a bulk scalar with quartic interactions localized on the two 3-branes. The minimum of this potential yields a compactification scale that solves the hierarchy problem without fine tuning of parameters.Comment: 8 pages, LaTeX; minor typo correcte

    On the strongly coupled heterotic string

    Get PDF
    We analyze in detail the anomaly cancellation conditions for the strongly coupled E8Ă—E8E_8 \times E_8 heterotic string introduced by Horava and Witten and find new features compared to the ten-dimensional Green-Schwarz mechanism. We project onto ten dimensions the corresponding Lagrangian of the zero-mode fields. We find that it has a simple interpretation provided by the conjectured heterotic string/fivebrane duality. The part which originates from eleven-dimensions is naturally described in fivebrane language. We discuss physical couplings and scales in four dimensions.Comment: Latex, 14 pages, Misprints correcte

    A Note on Marginally Stable Bound States in Type II String Theory

    Get PDF
    Spectrum of elementary string states in type II string theory contains ultra-short multiplets that are marginally stable. UU-duality transformation converts these states into bound states at threshold of pp-branes carrying Ramond-Ramond charges, and wrapped around pp-cycles of a torus. We propose a test for the existence of these marginally stable bound states. Using the recent results of Polchinski and of Witten, we argue that the spectrum of bound states of pp-branes is in agreement with the prediction of UU-duality.Comment: LaTeX file, 6 page

    Fate of Kaluza-Klein Bubble

    Full text link
    We numerically study classical time evolutions of Kaluza-Klein bubble space-time which has negative energy after a decay of vacuum. As the zero energy Witten's bubble space-time, where the bubble expands infinitely, the subsequent evolutions of Brill and Horowitz's momentarily static initial data show that the bubble will expand in terms of the area. At first glance, this result may support Corley and Jacobson's conjecture that the bubble will expand forever as well as the Witten's bubble. The irregular signatures, however, can be seen in the behavior of the lapse function in the maximal slicing gauge and the divergence of the Kretchman invariant. Since there is no appearance of the apparent horizon, we suspect an appearance of a naked singularity as the final fate of this space-time.Comment: 13 pages including 10 figures, RevTeX, epsf.sty. CGPG-99/12-8, RESCEU-6/00 and DAMTP-2000-30. To appear in Phys. Rev.

    Orientifold and Type II Dual Pairs

    Get PDF
    In this paper we present a symmetry of a toroidally compactified type II string theory. This symmetry has the interpretaion that it interchanges the left and the right-moving worldsheet coordinates and reverses the orientations of some of the spatial coordinates. We also identify another discrete symmetry of the type II theory which is related to the above one by a nontrivial U-duality element of string theory. This symmetry, however, has trivial action on the worldsheet coordinates and corresponds to an improper T-duality rotation. We then construct examples of type II dual pairs in four dimensions by modding out the known type II dual pairs by the above symmetries. We show the explicit matching of the spectrum and supersymmetries in these examples.Comment: 17 page

    K-Theory and S-Duality: Starting Over from Square 3

    Get PDF
    Recently Maldacena, Moore, and Seiberg (MMS) have proposed a physical interpretation of the Atiyah-Hirzebruch spectral sequence, which roughly computes the K-homology groups that classify D-branes. We note that in IIB string theory, this approach can be generalized to include NS charged objects and conjecture an S-duality covariant, nonlinear extension of the spectral sequence. We then compute the contribution of the MMS double-instanton configuration to the derivation d_5. We conclude with an M-theoretic generalization reminiscent of 11-dimensional E_8 gauge theory.Comment: 27 pages, 3 figure

    Hierarchies without Symmetries from Extra Dimensions

    Get PDF
    It is commonly thought that small couplings in a low-energy theory, such as those needed for the fermion mass hierarchy or proton stability, must originate from symmetries in a high-energy theory. We show that this expectation is violated in theories where the Standard Model fields are confined to a thick wall in extra dimensions, with the fermions "stuck" at different points in the wall. Couplings between them are then suppressed due to the exponentially small overlaps of their wave functions. This provides a framework for understanding both the fermion mass hierarchy and proton stability without imposing symmetries, but rather in terms of higher dimensional geography. A model independent prediction of this scenario is non-universal couplings of the Standard Model fermions to the ``Kaluza-Klein'' excitations of the gauge fields. This allows a measurement of the fermion locations in the extra dimensions at the LHC or NLC if the wall thickness is close to the TeV scale.Comment: 25 pages, 7 figure

    S-Theory

    Get PDF
    The representation theory of the maximally extended superalgebra with 32 fermionic and 528 bosonic generators is developed in order to investigate non-perturbative properties of the democratic secret theory behind strings and other p-branes. The presence of Lorentz non-singlet central extensions is emphasized, their role for understanding up to 13 hidden dimensions and their physical interpretation as boundaries of p-branes is elucidated. The criteria for a new larger set of BPS-like non-perturbative states is given and the methods of investigation are illustrated with several explicit examples.Comment: Latex, 18 papge

    Sources for Chern-Simons theories

    Full text link
    The coupling between Chern-Simons theories and matter sources defined by branes of different dimensionalities is examined. It is shown that the standard coupling to membranes, such as the one found in supergravity or in string theory, does not operate in the same way for CS theories; the only p-branes that naturally couple seem to be those with p=2n; these p-branes break the gauge symmetry (and supersymmetry) in a controlled and sensible manner.Comment: 17 pages, Dedicated to Claudio Bunster on the occasion of his 60th birthday. To appear in Quantum Mechanics of Fundamental Systems: The Quest for Beauty and Simplicit

    Indirect Collider Signals for Extra Dimensions

    Get PDF
    A recent suggestion that quantum gravity may become strong near the weak scale has several testable consequences. In addition to probing for the new large (submillimeter) extra dimensions associated with these theories via gravitational experiments, one could search for the Kaluza Klein towers of massive gravitons which are predicted in these models and which can interact with the fields of the Standard Model. Here we examine the indirect effects of these massive gravitons being exchanged in fermion pair production in \epem annihilation and Drell-Yan production at hadron colliders. In the latter case, we examine a novel feature of this theory, which is the contribution of gluon gluon initiated processes to lepton pair production. We find that these processes provide strong bounds, up to several TeV, on the string scale which are essentially independent of the number of extra dimensions. In addition, we analyze the angular distributions for fermion pair production with spin-2 graviton exchanges and demonstrate that they provide a smoking gun signal for low-scale quantum gravity which cannot be mimicked by other new physics scenarios.Comment: Corrected typos, added table and reference
    • …
    corecore