20 research outputs found

    Clinical presentation of hypothyroidism: a study of 50 cases

    Get PDF
    Background: When the thyroid gland does not produce and release enough thyroid hormone into your circulation, it is known as hypothyroidism. Your metabolism becomes slower as a result. Hypothyroidism, also known as an underactive thyroid, can make you feel exhausted, put-on weight, and have trouble with cold weather. In utero, throughout infancy, during youth, or even during maturity, it may begin to develop. The frequency of unanticipated overt hypothyroidism varies from 1 to 18 cases per thousand persons when accompanied by biochemical and clinical symptoms of hypothyroidism. The aim of the study was to observe the various clinical presentations of hypothyroidismMethods: This cross-sectional observational case-based study was conducted at the institute of nuclear medicine, Dhaka medical college hospital, Dhaka, Bangladesh. The study duration was 6 months, from January 2005 to July 2005. A total of 50 patients attended at the study place during the study period who were biochemically hypothyroid were included in the study.Results: The age range of the patients was 13 months to 54 years with a mean age of 29.5 years in this series. The majority of the patients were between 20 to 49 years of age. Female comprises 80.0% in comparison to 20.0% of male cases of hypothyroidism. Spontaneous primary (idiopathic) hypothyroidism (90.0%), post-radioiodine therapy, and post-ablative hypothyroidism were the most important causes of hypothyroidism in this series. Most typical symptoms and signs of hypothyroidism were found in this study. The most common symptoms were generalized weakness, lethargy, slowness of activities, impairment of memory, loss of scalp hair, somnolence, dry skin, puffiness of the face, constipation, weight gain, hoarseness of voice, swelling of the body, decreased sweating and paraesthesia. Cases of idiopathic hypothyroidism and other types had similar symptoms. The mean duration of symptoms before medical consultation was 2.9 years. Dry and coarse skin topped the list of physical findings and was present in 60.0% of the cases. Other findings in order of frequency include goiter (56.0%), puffiness of the face (38.0%), cold and thick skin (44.0%), thick tongue (24.0%), peripheral edema (24.0%), Anemia (20.0%), pallor of the face (12.0%), bradycardia (08.0%), thick lips (4.0%), ascites (2.0%) and pericardial effusion (2.0%).Conclusions: Although in the present series a limited number of patients were included, it encompassed varieties of cases. Moreover, an attempt was made to evaluate the common presentation, age incidence, sex distribution, and laboratory status of hypothyroidism in our country, giving more emphasis on clinical findings

    Coronavirus disease 2019 and future pandemics: Impacts on livestock health and production and possible mitigation measures

    Get PDF
    The World Health Organization declared coronavirus disease 2019 (COVID-19) a pandemic on March 11, 2020. COVID-19, the current global health emergency, is wreaking havoc on human health systems and, to a lesser degree, on animals globally. The outbreak has continued since the first report of COVID-19 in China in December 2019, and the second and third waves of the outbreak have already begun in several countries. COVID-19 is expected to have adverse effects on crop production, food security, integrated pest control, tourism, the car industry, and other sectors of the global economy. COVID-19 induces a range of effects in livestock that is reflected economically since human health and livelihood are intertwined with animal health. We summarize the potentially harmful effects of COVID-19 on livestock and possible mitigation steps in response to this global outbreak. Mitigation of the negative effects of COVID-19 and future pandemics on livestock requires the implementation of current guidelines

    Sustainable Antibiotic-Free Broiler Meat Production: Current Trends, Challenges, and Possibilities in a Developing Country Perspective

    Get PDF
    Antibiotic-free broiler meat production is becoming increasingly popular worldwide due to consumer perception that it is superior to conventional broiler meat. Globally, broiler farming impacts the income generation of low-income households, helping to alleviate poverty and secure food in the countryside and in semi-municipal societies. For decades, antibiotics have been utilized in the poultry industry to prevent and treat diseases and promote growth. This practice contributes to the development of drug-resistant bacteria in livestock, including poultry, and humans through the food chain, posing a global public health threat. Additionally, consumer demand for antibiotic-free broiler meat is increasing. However, there are many challenges that need to be overcome by adopting suitable strategies to produce antibiotic-free broiler meat with regards to food safety and chicken welfare issues. Herein, we focus on the importance and current scenario of antibiotic use, prospects, and challenges in the production of sustainable antibiotic-free broiler meat, emphasizing broiler farming in the context of Bangladesh. Moreover, we also discuss the need for and challenges of antibiotic alternatives and provide a future outlook for antibiotic-free broiler meat production

    Programs for calculating the statistical powers of detecting susceptibility genes in case–control studies based on multistage designs

    Get PDF
    Motivation: A two-stage association study is the most commonly used method among multistage designs to efficiently identify disease susceptibility genes. Recently, some SNP studies have utilized more than two stages to detect disease genes. However, there are few available programs for calculating statistical powers and positive predictive values (PPVs) of arbitrary n-stage designs

    An Estimation of Five-decade Long Monkeypox Case Fatality Rate: Systematic Review and Meta-analysis

    Get PDF
    On July 23, 2022 the World Health Organization (WHO) has announced the Monkeypox disease (MPXD) as a worldwide public health issue. This study conducts a systematic review and meta-analysis to determine the overall case fatality rate (CFR) of MPXD worldwide during 1970–2022. The tenure-tracked MPXD outbreaks associated with CFR were calculated based on available published data from six different periods (i.e., 1970-79, 1980-89, 1990-99, 2000-09, 2010-19, and 2000-2022). A total of 229 peer-reviewed accessible articles were investigated, of which, 17 articles met the inclusion and exclusion criteria. Most of the studies on MPXD CFR were published in the Democratic Republic of the Congo (DRC) providing 47% of data for the current meta-analysis. The overall pooled CFR of MPXD was 4.14% (range: 0.62% – 9.51%) during 1970–2022. In this study, total of 379 death cases were found from published MPXV based research articles where the pooled estimate CFR was 1.87%. The pooled CFR was higher during the earlier outbreak of the MPXD such as 10.71% in 1970-1979. With the progress of time, the CFR from MPXD followed a decreasing trend and reached 5.38% in 1980-1999 and 4.45% in 2000-2022. Young male children aged73.0%. This is the first meta-analysis using 52 years of data which indicates that the CFR of MPXV is decreasing from previous years. The findings of this meta-analysis might be paramount for the policymakers to tackle MPXD and minimize the overall CFR of MPXD through strategic actions

    Antimicrobial Resistance, Virulence Factors and Genetic Diversity of Escherichia coli Isolates from Household Water Supply in Dhaka, Bangladesh

    Get PDF
    Background: Unsafe water supplies continue to raise public health concerns, especially in urban areas in low resource countries. To understand the extent of public health risk attributed to supply water in Dhaka city, Bangladesh, Escherichia coli isolated from tap water samples collected from different locations of the city were characterized for their antibiotic resistance, pathogenic properties and genetic diversity. Methodology/Principal Findings: A total of 233 E. coli isolates obtained from 175 tap water samples were analysed for susceptibility to 16 different antibiotics and for the presence of genes associated with virulence and antibiotic resistance. Nearly 36% (n = 84) of the isolates were multi-drug(≥3 classes of antibiotics) resistant (MDR) and 26% (n = 22) of these were positive for extended spectrum β-lactamase (ESBL). Of the 22 ESBL-producers, 20 were positive for blaCTX-M-15, 7 for blaOXA-1-group(all had blaOXA-47) and 2 for blaCMY-2. Quinolone resistance genes, qnrS and qnrB were detected in 6 and 2 isolates, respectively. Around 7% (n = 16) of the isolates carried virulence gene(s) characteristic of pathogenic E. coli; 11 of these contained lt and/or st and thus belonged to enterotoxigenic E. coli and 5 contained bfp and eae and thus belonged to enteropathogenic E. coli. All MDR isolates carried multiple plasmids (2 to 8) of varying sizes ranging from 1.2 to >120 MDa. Ampicillin and ceftriaxone resistance were co-transferred in conjugative plasmids of 70 to 100 MDa in size, while ampicillin, trimethoprim-sulfamethoxazole and tetracycline resistance were co-transferred in conjugative plasmids of 50 to 90 MDa. Pulsed-field gel electrophoresis analysis revealed diverse genetic fingerprints of pathogenic isolates. Significance: Multi-drug resistant E. coli are wide spread in public water supply in Dhaka city, Bangladesh. Transmission of resistant bacteria and plasmids through supply water pose serious threats to public health in urban areas

    Effect of particle size and composition on local magnetic hyperthermia of chitosan-Mg1−xCoxFe2O4 nanohybrid

    No full text
    In this study, Mg1−xCoxFe2O4 (0≤x ≤ 1 with ∆x = 0.1) or MCFO nanoparticles were synthesized using a chemical co-precipitation method and annealed at 200, 400, 600, and 800°C respectively to investigate the structural properties of the materials by X-ray diffractometer (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared spectroscopy (FTIR). Controlled annealing increased particle size for each value of x. The aim was to investigate how specific loss power (SLP) and maximum temperature (Tmax) during local magnetic hyperthermia were affected by structural alterations associated with particle size and composition. The lattice parameter, X-ray density, ionic radius, hopping length, bond length, cation-cation distance, and cation-anion distance increase with an increase in Co2+ content. Raman and FTIR spectroscopy reveal changes in cation distribution with Co2+ content and particle size. Magnetic properties measured by the physical property measurement system (PPMS) showed saturation magnetization (Ms), coercivity (Hc), remanent magnetization (Mr/Ms), and anisotropy constant (K1) of the Mg1−xCoxFe2O4 nanoparticles increase with Co2+ content and particle size. When exposed to an rf magnetic field, the nanohybrids experienced an increase in both the SLP (specific loss power) and Tmax (maximum temperature) as the particle size initially increased. However, these values reached their peak at critical particle size and subsequently decreased. This occurs since a modest increase in anisotropy, resulting from the presence of Co2+ and larger particle size, facilitates Néel and Brownian relaxation. However, for high anisotropy values and particle size, the Néel and Brownian relaxations are hindered, leading to the emergence of a critical size. The critical size increases as the Co2+ content decreases, but it decreases as the Co2+ content increases, a consequence of higher anisotropy with the increase in Co2+. Additionally, it is noteworthy that the maximum temperature (Tmax) rises as the concentration of nanohybrids grows, but the specific loss power (SLP) decreases. An increased concentration of chitosan-MCFO nanohybrids inhibits both the Néel and Brownian relaxation processes, reducing specific loss power

    Strength development in fine-grained paddy field soil by lime addition

    No full text
    Due to high population density, the people of Bangladesh are building houses and the government is establishing infrastructure (such as roads, flyovers, bridges) on agricultural land that pose significant settlement issues. Consequently, such development works require prior improvement of the soft soil or improvement during construction to restrict post-construction failures. Soil stabilization, a conventionally used ground improvement method, is often utilized to alter engineering properties of fine-grained soil such as strength, stability, permeability, weathering resistance, etc. to maintain the required construction criteria. Moreover, the addition of lime in the soil is demonstrated to markedly reduce the hydraulic conductivity, which will prevent the vertical movement of pore water. With this in mind, in the current study an attempt has been undertaken to increase the strength of fine-grained soil of agricultural land by adding commercially available hydrated lime, which may in the future be used as foundation material. For this purpose, lime was added at various percentages (0–12%) by weight to soil collected from a paddy field. The study noted the collected soils as being inorganic silts of high plasticity or organic clays of medium to high plasticity. Unconfined compression tests were conducted on cylindrical mold prepared specimens with clayey soil in the presence of lime, and all specimens were cured for 3–90 days for strength development. The study revealed 7% added lime as the optimum content, with the corresponding unconfined compressive strength (UCS) observed to be 344 kPa and 356 kPa at the end of 28 days and 90 days, respectively. The evolution of unconfined compressive strength was higher in hotter and more alkaline environments

    Metabolomic Biomarker Identification in Presence of Outliers and Missing Values

    No full text
    Metabolomics is the sophisticated and high-throughput technology based on the entire set of metabolites which is known as the connector between genotypes and phenotypes. For any phenotypic changes, potential metabolite (biomarker) identification is very important because it provides diagnostic as well as prognostic markers and can help to develop new biomolecular therapy. Biomarker identification from metabolomics data analysis is hampered by the use of high-throughput technology that provides high dimensional data matrix which contains missing values as well as outliers. However, missing value imputation and outliers handling techniques play important role in identifying biomarker correctly. Although several missing value imputation techniques are available, outliers deteriorate the accuracy of imputation as well as the accuracy of biomarker identification. Therefore, in this paper we have proposed a new biomarker identification technique combining the groupwise robust singular value decomposition, t-test, and fold-change approach that can identify biomarkers more correctly from metabolomics dataset. We have also compared the performance of the proposed technique with those of other traditional techniques for biomarker identification using both simulated and real data analysis in absence and presence of outliers. Using our proposed method in hepatocellular carcinoma (HCC) dataset, we have also identified the four upregulated and two downregulated metabolites as potential metabolomic biomarkers for HCC disease

    Laser Raman Spectroscopy with Different Excitation Sources and Extension to Surface Enhanced Raman Spectroscopy

    Get PDF
    A dispersive Raman spectrometer was used with three different excitation sources (Argon-ion, He-Ne, and Diode lasers operating at 514.5 nm, 633 nm, and 782 nm, resp.). The system was employed to a variety of Raman active compounds. Many of the compounds exhibit very strong fluorescence while being excited with a laser emitting at UV-VIS region, hereby imposing severe limitation to the detection efficiency of the particular Raman system. The Raman system with variable excitation laser sources provided us with a desired flexibility toward the suppression of unwanted fluorescence signal. With this Raman system, we could detect and specify the different vibrational modes of various hazardous organic compounds and some typical dyes (both fluorescent and nonfluorescent). We then compared those results with the ones reported in literature and found the deviation within the range of ±2 cm−1, which indicates reasonable accuracy and usability of the Raman system. Then, the surface enhancement technique of Raman spectrum was employed to the present system. To this end, we used chemically prepared colloidal suspension of silver nanoparticles as substrate and Rhodamine 6G as probe. We could observe significant enhancement of Raman signal from Rhodamine 6G using the colloidal solution of silver nanoparticles the average magnitude of which is estimated to be 103
    corecore