276 research outputs found

    Expression of inhibitor of apoptosis protein Livin in renal cell carcinoma and non-tumorous adult kidney

    Get PDF
    The antiapoptotic Livin/ML-IAP gene has recently gained much attention as a potential new target for cancer therapy. Reports indicating that livin is expressed almost exclusively in tumours, but not in the corresponding normal tissue, suggested that the targeted inhibition of livin may present a novel tumour-specific therapeutic strategy. Here, we compared the expression of livin in renal cell carcinoma and in non-tumorous adult kidney tissue by quantitative real-time reverse transcription-PCR, immunoblotting, and immunohistochemistry. We found that livin expression was significantly increased in tumours (P=0.0077), but was also clearly detectable in non-tumorous adult kidney. Transcripts encoding Livin isoforms α and β were found in both renal cell carcinoma and normal tissue, without obvious qualitative differences. Livin protein in renal cell carcinoma samples exhibited cytoplasmic and/or nuclear staining. In non-tumorous kidney tissue, Livin protein expression was only detectable in specific cell types and restricted to the cytoplasm. Thus, whereas the relative overexpression of livin in renal cell carcinoma indicates that it may still represent a therapeutic target to increase the apoptotic sensitivity of kidney cancer cells, this strategy is likely to be not tumour-specific

    A RasGAP SH3 Peptide Aptamer Inhibits RasGAP-Aurora Interaction and Induces Caspase-Independent Tumor Cell Death

    Get PDF
    The Ras GTPase-activating protein RasGAP catalyzes the conversion of active GTP-bound Ras into inactive GDP-bound Ras. However, RasGAP also acts as a positive effector of Ras and exerts an anti-apoptotic activity that is independent of its GAP function and that involves its SH3 (Src homology) domain. We used a combinatorial peptide aptamer approach to select a collection of RasGAP SH3 specific ligands. We mapped the peptide aptamer binding sites by performing yeast two-hybrid mating assays against a panel of RasGAP SH3 mutants. We examined the biological activity of a peptide aptamer targeting a pocket delineated by residues D295/7, L313 and W317. This aptamer shows a caspase-independent cytotoxic activity on tumor cell lines. It disrupts the interaction between RasGAP and Aurora B kinase. This work identifies the above-mentioned pocket as an interesting therapeutic target to pursue and points its cognate peptide aptamer as a promising guide to discover RasGAP small-molecule drug candidates

    EZH2 Depletion Blocks the Proliferation of Colon Cancer Cells

    Get PDF
    The Enhancer of Zeste 2 (EZH2) protein has been reported to stimulate cell growth in some cancers and is therefore considered to represent an interesting new target for therapeutic intervention. Here, we investigated a possible role of EZH2 for the growth control of colon cancer cells. RNA interference (RNAi)-mediated intracellular EZH2 depletion led to cell cycle arrest of colon carcinoma cells at the G1/S transition. This was associated with a reduction of cell numbers upon transient transfection of synthetic EZH2-targeting siRNAs and with inhibition of their colony formation capacity upon stable expression of vector-borne siRNAs. We furthermore tested whether EZH2 may repress the growth-inhibitory p27 gene, as reported for pancreatic cancer. However, expression analyses of colon cancer cell lines and colon cancer biopsies did not reveal a consistent correlation between EZH2 and p27 levels. Moreover, EZH2 depletion did not re-induce p27 expression in colon cancer cells, indicating that p27 repression by EZH2 may be cell- or tissue-specific. Whole genome transcriptome analyses identified cellular genes affected by EZH2 depletion in colon cancer cell lines. They included several cancer-associated genes linked to cellular proliferation or invasion, such as Dag1, MageD1, SDC1, Timp2, and Tob1. In conclusion, our results demonstrate that EZH2 depletion blocks the growth of colon cancer cells. These findings might provide benefits for the treatment of colon cancer

    Novel curcumin- and emodin-related compounds identified by in silico 2D/3D conformer screening induce apoptosis in tumor cells

    Get PDF
    BACKGROUND: Inhibition of the COP9 signalosome (CSN) associated kinases CK2 and PKD by curcumin causes stabilization of the tumor suppressor p53. It has been shown that curcumin induces tumor cell death and apoptosis. Curcumin and emodin block the CSN-directed c-Jun signaling pathway, which results in diminished c-Jun steady state levels in HeLa cells. The aim of this work was to search for new CSN kinase inhibitors analogue to curcumin and emodin by means of an in silico screening method. METHODS: Here we present a novel method to identify efficient inhibitors of CSN-associated kinases. Using curcumin and emodin as lead structures an in silico screening with our in-house database containing more than 10(6 )structures was carried out. Thirty-five compounds were identified and further evaluated by the Lipinski's rule-of-five. Two groups of compounds can be clearly discriminated according to their structures: the curcumin-group and the emodin-group. The compounds were evaluated in in vitro kinase assays and in cell culture experiments. RESULTS: The data revealed 3 compounds of the curcumin-group (e.g. piceatannol) and 4 of the emodin-group (e.g. anthrachinone) as potent inhibitors of CSN-associated kinases. Identified agents increased p53 levels and induced apoptosis in tumor cells as determined by annexin V-FITC binding, DNA fragmentation and caspase activity assays. CONCLUSION: Our data demonstrate that the new in silico screening method is highly efficient for identifying potential anti-tumor drugs

    Human papillomavirus-16 is integrated in lung carcinomas: a study in Chile

    Get PDF
    The human papillomavirus (HPV) was detected in 20 (29%) out of 69 lung carcinomas (LCs) in Chile, by PCR and Southern blot, and was more frequently detected in squamous cell carcinoma (SQC) than in adenocarcinomas (46 vs 9%, P=0.001). HPV-16, positive in 11 cases, was the most frequently detected HPV genotype determined by DNA sequencing. HPV-16 E2/E6 ratio, estimated from real-time PCR analysis, was much lower than the unity, suggesting that at least a partial HPV-16 genome was integrated in all but one HPV-16-positive SQCs. The remaining one case was suspected to have only episomal HPV-16. Although the viral load was low in most of the LCs, a case showed the HPV-16 copy number as high as 8479 per nanogram DNA, which was even a few times higher than the minimum viral load of seven cervical carcinomas (observed viral load: 3356–609 392 per nanogram DNA). The expression of the HPV-16/18 E6 protein was found in only two HPV-16-positive SQCs (13%) but not in the case with the highest viral load. Although the viral load was in general very low and HPV E6 expression is none or weak, further studies seem warranted to examine aetiological involvement of high-risk HPV in lung carcinogenesis

    Indium im Wolframerz

    No full text

    Ueber die obere Temperaturgrenze des Lebens

    No full text
    corecore