16,845 research outputs found

    Advanced dendritic web growth development and development of single-crystal silicon dendritic ribbon and high-efficiency solar cell program

    Get PDF
    Efforts to demonstrate that the dendritic web technology is ready for commercial use by the end of 1986 continues. A commercial readiness goal involves improvements to crystal growth furnace throughput to demonstrate an area growth rate of greater than 15 sq cm/min while simultaneously growing 10 meters or more of ribbon under conditions of continuous melt replenishment. Continuous means that the silicon melt is being replenished at the same rate that it is being consumed by ribbon growth so that the melt level remains constant. Efforts continue on computer thermal modeling required to define high speed, low stress, continuous growth configurations; the study of convective effects in the molten silicon and growth furnace cover gas; on furnace component modifications; on web quality assessments; and on experimental growth activities

    Furnace and support equipment for space processing

    Get PDF
    A core facility capable of performing a majority of materials processing experiments is discussed. Experiment classes are described, the needs peculiar to each experiment type are outlined, and projected facility requirements to perform the experiments are treated. Control equipment (automatic control) and variations of the Czochralski method for use in space are discussed

    Detection and classification characteristics of arrays of carbon black/organic polymer composite chemiresistive vapor detectors for the nerve agent simulants Dimethylmethylphosphonate and Diisopropylmethylphosponate

    Get PDF
    Arrays of conducting polymer composite vapor detectors have been evaluated for performance in the presence of the nerve agent simulants dimethylmethylphosphonate (DMMP) and diisopropylmethylphosponate (DIMP). Limits of detection for DMMP on unoptimized carbon black-organic polymer composite vapor detectors in laboratory air were estimated to be 0.047-0.24 mg m^(-3). These values are lower than the EC50 value for the nerve agents sarin (methylphosphonofluoridic acid, (1-methylethyl) ester) and soman, which have been established as equals 0.8 mg m^(-3). Arrays of these vapor detectors were easily able to resolve signatures due to exposures to DMMP from those due to DIMP or due to a variety of other test analytes in a laboratory air background. In addition, DMMP at 27 mg m^(-3) could be detected and differentiated from the signatures of the other test analytes in the presence of backgrounds of potential interferents in the background ambient, including water, methanol, benzene, toluene, diesel fuel, lighter fluid, vinegar and tetrahydrofuran, even when these interferents were present in much higher concentrations than that of the DMMP or DIMP being detected

    Large-area sheet task advanced dendritic web growth development

    Get PDF
    The computer code for calculating web temperature distribution was expanded to provide a graphics output in addition to numerical and punch card output. The new code was used to examine various modifications of the J419 configuration and, on the basis of the results, a new growth geometry was designed. Additionally, several mathematically defined temperature profiles were evaluated for the effects of the free boundary (growth front) on the thermal stress generation. Experimental growth runs were made with modified J419 configurations to complement the modeling work. A modified J435 configuration was evaluated

    Microprogram scheme for automatic recovery from computer error

    Get PDF
    Microprogram scheme enables computer to recover from failure in one of its two central processing units during time duration of instruction in which failure occurs. Microprogram advantages include - /1/ built-in interpretive capability, /2/ selection of processing interrupts by priority, and /3/ economical use of bootstrap sequence

    Solvent mediated interactions between model colloids and interfaces: A microscopic approach

    Get PDF
    We determine the solvent mediated contribution to the effective potentials for model colloidal or nano- particles dispersed in a binary solvent that exhibits fluid-fluid phase separation. Using a simple density functional theory we calculate the density profiles of both solvent species in the presence of the `colloids', which are treated as external potentials, and determine the solvent mediated (SM) potentials. Specifically, we calculate SM potentials between (i) two colloids, (ii) a colloid and a planar fluid-fluid interface, and (iii) a colloid and a planar wall with an adsorbed wetting film. We consider three different types of colloidal particles: colloid A which prefers the bulk solvent phase rich in species 2, colloid C which prefers the solvent phase rich in species 1, and `neutral' colloid B which has no strong preference for either phase, i.e. the free energies to insert the colloid into either of the coexisting bulk phases are almost equal. When a colloid which has a preference for one of the two solvent phases is inserted into the disfavored phase at statepoints close to coexistence a thick adsorbed `wetting' film of the preferred phase may form around the colloids. The presence of the adsorbed film has a profound influence on the form of the SM potentials.Comment: 17 Pages, 13 Figures. Accepted for publication in Journal of Chemical Physic

    Densest local packing diversity. II. Application to three dimensions

    Full text link
    The densest local packings of N three-dimensional identical nonoverlapping spheres within a radius Rmin(N) of a fixed central sphere of the same size are obtained for selected values of N up to N = 1054. In the predecessor to this paper [A.B. Hopkins, F.H. Stillinger and S. Torquato, Phys. Rev. E 81 041305 (2010)], we described our method for finding the putative densest packings of N spheres in d-dimensional Euclidean space Rd and presented those packings in R2 for values of N up to N = 348. We analyze the properties and characteristics of the densest local packings in R3 and employ knowledge of the Rmin(N), using methods applicable in any d, to construct both a realizability condition for pair correlation functions of sphere packings and an upper bound on the maximal density of infinite sphere packings. In R3, we find wide variability in the densest local packings, including a multitude of packing symmetries such as perfect tetrahedral and imperfect icosahedral symmetry. We compare the densest local packings of N spheres near a central sphere to minimal-energy configurations of N+1 points interacting with short-range repulsive and long-range attractive pair potentials, e.g., 12-6 Lennard-Jones, and find that they are in general completely different, a result that has possible implications for nucleation theory. We also compare the densest local packings to finite subsets of stacking variants of the densest infinite packings in R3 (the Barlow packings) and find that the densest local packings are almost always most similar, as measured by a similarity metric, to the subsets of Barlow packings with the smallest number of coordination shells measured about a single central sphere, e.g., a subset of the FCC Barlow packing. We additionally observe that the densest local packings are dominated by the spheres arranged with centers at precisely distance Rmin(N) from the fixed sphere's center.Comment: 45 pages, 18 figures, 2 table

    Can magnetized turbulence set the mass scale of stars?

    Get PDF
    Understanding the evolution of self-gravitating, isothermal, magnetized gas is crucial for star formation, as these physical processes have been postulated to set the initial mass function (IMF). We present a suite of isothermal magnetohydrodynamic (MHD) simulations using the GIZMO code that follow the formation of individual stars in giant molecular clouds (GMCs), spanning a range of Mach numbers found in observed GMCs (⁠M∼10−50⁠). As in past works, the mean and median stellar masses are sensitive to numerical resolution, because they are sensitive to low-mass stars that contribute a vanishing fraction of the overall stellar mass. The mass-weighted median stellar mass M₅₀ becomes insensitive to resolution once turbulent fragmentation is well resolved. Without imposing Larson-like scaling laws, our simulations find M₅₀∝∼M₀M⁻³α_(turb)SFE^(1/3) for GMC mass M₀, sonic Mach number M⁠, virial parameter α_(turb), and star formation efficiency SFE = M⋆/M₀. This fit agrees well with previous IMF results from the RAMSES, ORION2, and SPHNG codes. Although M₅₀ has no significant dependence on the magnetic field strength at the cloud scale, MHD is necessary to prevent a fragmentation cascade that results in non-convergent stellar masses. For initial conditions and SFE similar to star-forming GMCs in our Galaxy, we predict M₅₀ to be >20M⊙⁠, an order of magnitude larger than observed (⁠∼2M⊙⁠), together with an excess of brown dwarfs. Moreover, M₅₀ is sensitive to initial cloud properties and evolves strongly in time within a given cloud, predicting much larger IMF variations than are observationally allowed. We conclude that physics beyond MHD turbulence and gravity are necessary ingredients for the IMF

    Calibration of the Ames Anechoic Facility. Phase 1: Short range plan

    Get PDF
    A calibration was made of the acoustic and aerodynamic characteristics of a small, open-jet wind tunnel in an anechoic room. The jet nozzle was 102 mm diameter and was operated subsonically. The anechoic-room dimensions were 7.6 m by 5.5 m by 3.4 m high (wedge tip to wedge tip). Noise contours in the chamber were determined by various jet speeds and exhaust collector positions. The optimum nozzle/collector separation from an acoustic standpoint was 2.1 m. Jet velocity profiles and turbulence levels were measured using pressure probes and hot wires. The jet was found to be symmetric, with no unusual characteristics. The turbulence measurements were hampered by oil mist contamination of the airflow
    corecore