62 research outputs found

    Cultured dissociated primary dorsal root ganglion neurons from adult horses enable study of axonal transport

    Get PDF
    Neurological disorders are prevalent in horses, but their study is challenging due to anatomic constraints and the large body size; very few host-specific in vitro models have been established to study these types of diseases, particularly from adult donor tissue. Here we report the generation of primary neuronal dorsal root ganglia (DRG) cultures from adult horses: the mixed, dissociated cultures, containing neurons and glial cells, remained viable for at least 90 days. Similar to DRG neurons in vivo, cultured neurons varied in size, and they developed long neurites. The mitochondrial movement was detected in cultured cells and was significantly slower in glial cells compared to DRG-derived neurons. In addition, mitochondria were more elongated in glial cells than those in neurons. Our culture model will be a useful tool to study the contribution of axonal transport defects to specific neurodegenerative diseases in horses as well as comparative studies aimed at evaluating species-specific differences in axonal transport and survival

    The importance of adjusting for potential confounders in Bayesian hierarchical models synthesising evidence from randomised and non-randomised studies: an application comparing treatments for abdominal aortic aneurysms

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Informing health care decision making may necessitate the synthesis of evidence from different study designs (e.g., randomised controlled trials, non-randomised/observational studies). Methods for synthesising different types of studies have been proposed, but their routine use requires development of approaches to adjust for potential biases, especially among non-randomised studies. The objective of this study was to extend a published Bayesian hierarchical model to adjust for bias due to confounding in synthesising evidence from studies with different designs.</p> <p>Methods</p> <p>In this new methodological approach, study estimates were adjusted for potential confounders using differences in patient characteristics (e.g., age) between study arms. The new model was applied to synthesise evidence from randomised and non-randomised studies from a published review comparing treatments for abdominal aortic aneurysms. We compared the results of the Bayesian hierarchical model adjusted for differences in study arms with: 1) unadjusted results, 2) results adjusted using aggregate study values and 3) two methods for downweighting the potentially biased non-randomised studies. Sensitivity of the results to alternative prior distributions and the inclusion of additional covariates were also assessed.</p> <p>Results</p> <p>In the base case analysis, the estimated odds ratio was 0.32 (0.13,0.76) for the randomised studies alone and 0.57 (0.41,0.82) for the non-randomised studies alone. The unadjusted result for the two types combined was 0.49 (0.21,0.98). Adjusted for differences between study arms, the estimated odds ratio was 0.37 (0.17,0.77), representing a shift towards the estimate for the randomised studies alone. Adjustment for aggregate values resulted in an estimate of 0.60 (0.28,1.20). The two methods used for downweighting gave odd ratios of 0.43 (0.18,0.89) and 0.35 (0.16,0.76), respectively. Point estimates were robust but credible intervals were wider when using vaguer priors.</p> <p>Conclusions</p> <p>Covariate adjustment using aggregate study values does not account for covariate imbalances between treatment arms and downweighting may not eliminate bias. Adjustment using differences in patient characteristics between arms provides a systematic way of adjusting for bias due to confounding. Within the context of a Bayesian hierarchical model, such an approach could facilitate the use of all available evidence to inform health policy decisions.</p

    Higher predation risk for insect prey at low latitudes and elevations

    Get PDF
    Biotic interactions underlie ecosystem structure and function, but predicting interaction outcomes is difficult. We tested the hypothesis that biotic interaction strength increases toward the equator, using a global experiment with model caterpillars to measure predation risk. Across an 11,660-kilometer latitudinal gradient spanning six continents, we found increasing predation toward the equator, with a parallel pattern of increasing predation toward lower elevations. Patterns across both latitude and elevation were driven by arthropod predators, with no systematic trend in attack rates by birds or mammals. These matching gradients at global and regional scales suggest consistent drivers of biotic interaction strength, a finding that needs to be integrated into general theories of herbivory, community organization, and life-history evolution

    CD4+ and CD8+ T cells and antibodies are associated with protection against Delta vaccine breakthrough infection: a nested case-control study within the PITCH study

    Get PDF
    Serological correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection after vaccination ("vaccine breakthrough") have been described. However, T cell correlates of protection against breakthrough are incompletely defined, especially the specific contributions of CD4+ and CD8+ T cells. Here, 279 volunteers in the Protective Immunity from T Cells in Healthcare Workers (PITCH) UK cohort study were enrolled in a nested case-control study. Cases were those who tested SARS-CoV-2 PCR or lateral flow device (LFD) positive after two vaccine doses during the Delta-predominant era (n = 32), while controls were those who did not report a positive test or undergo anti-nucleocapsid immunoglobulin G (IgG) seroconversion during this period (n = 247). Previous SARS-CoV-2 infection prior to vaccination was associated with reduced odds of vaccine breakthrough. Using samples from 28 d after the second vaccine dose, before all breakthroughs occurred, we observed future cases had lower ancestral spike (S)- and receptor binding domain-specific IgG titers and S1- and S2-specific T cell interferon gamma (IFNÎł) responses compared with controls, although these differences did not persist when individuals were stratified according to previous infection status before vaccination. In a subset of matched infection-naĂŻve cases and controls, vaccine breakthrough cases had lower CD4+ and CD8+ IFNÎł and tumor necrosis factor (TNF) responses to Delta S peptides compared with controls. For CD8+ responses, this difference appeared to be driven by reduced responses to Delta compared with ancestral peptides among cases; this reduced response to Delta peptides was not observed in controls. Our findings support a protective role for T cells against Delta breakthrough infection. IMPORTANCE Defining correlates of protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine breakthrough infection informs vaccine policy for booster doses and future vaccine designs. Existing studies demonstrate humoral correlates of protection, but the role of T cells in protection is still unclear. In this study, we explore antibody and T cell immune responses associated with protection against Delta variant vaccine breakthrough infection in a well-characterized cohort of UK Healthcare Workers (HCWs). We demonstrate evidence to support a role for CD4+ and CD8+ T cells as well as antibodies against Delta vaccine breakthrough infection. In addition, our results suggest a potential role for cross-reactive T cells in vaccine breakthrough

    The relative efficacy of nine osteoporosis medications for reducing the rate of fractures in post-menopausal women

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the absence of head-to-head trials, indirect comparisons of randomized placebo-controlled trials may provide a viable option to assess relative efficacy. The purpose was to estimate the relative efficacy of reduction of fractures in post-menopausal women, and to assess robustness of the results.</p> <p>Methods</p> <p>A systematic literature review of multiple databases identified randomized placebo-controlled trials with nine drugs for post-menopausal women. Odds ratio and 95% credibility intervals for the rates of hip, non-vertebral, vertebral, and wrist fractures for each drug and between drugs were derived using a Bayesian approach. A drug was ranked as the most efficacious if it had the highest posterior odds ratio, or had the highest effect size.</p> <p>Results</p> <p>30 studies including 59,209 patients reported fracture rates for nine drugs: alendronate (6 studies), denosumab (1 study), etidronate (8 studies), ibandronate (4 studies), raloxifene (1 study), risedronate (7 studies), strontium (2 study), teriparatide (1 study), and zoledronic acid (1 study). The drugs with the highest probability of reducing non-vertebral fractures was etidronate and teriparatide while the drugs with the highest probability of reducing vertebral, hip or wrist fractures were teriparatide, zoledronic acid and denosumab. The drugs with the largest effect size for vertebral fractures were zoledronic acid, teriparatide and denosumab, while the drugs with the highest effect size for non-vertebral, hip or wrist fractures were alendronate or risedronate. Estimates were consistent between Bayesian and classical approaches.</p> <p>Conclusion</p> <p>Teriparatide, zoledronic acid and denosumab have the highest probabilities of being most efficacious for non-vertebral and vertebral fractures, and having the greatest effect sizes. The estimates from indirect comparisons were robust to differences in methodology.</p

    Fatal COVID-19 outcomes are associated with an antibody response targeting epitopes shared with endemic coronaviruses

    Get PDF
    The role of immune responses to previously seen endemic coronavirus epitopes in severe acute respiratory coronavirus 2 (SARS-CoV-2) infection and disease progression has not yet been determined. Here, we show that a key characteristic of fatal coronavirus disease (COVID-19) outcomes is that the immune response to the SARS-CoV-2 spike protein is enriched for antibodies directed against epitopes shared with endemic beta-coronaviruses, and has a lower proportion of antibodies targeting the more protective variable regions of the spike. The magnitude of antibody responses to the SARS-CoV-2 full-length spike protein, its domains and subunits, and the SARS-CoV-2 nucleocapsid also correlated strongly with responses to the endemic beta-coronavirus spike proteins in individuals admitted to intensive care units (ICU) with fatal COVID-19 outcomes, but not in individuals with non-fatal outcomes. This correlation was found to be due to the antibody response directed at the S2 subunit of the SARS-CoV-2 spike protein, which has the highest degree of conservation between the beta-coronavirus spike proteins. Intriguingly, antibody responses to the less cross-reactive SARS-CoV-2 nucleocapsid were not significantly different in individuals who were admitted to ICU with fatal and non-fatal outcomes, suggesting an antibody profile in individuals with fatal outcomes consistent with an original antigenic sin type-response

    Evolution of long-term vaccine-induced and hybrid immunity in healthcare workers after different COVID-19 vaccine regimens

    Get PDF
    BACKGROUND: Both infection and vaccination, alone or in combination, generate antibody and T cell responses against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). However, the maintenance of such responses-and hence protection from disease-requires careful characterization. In a large prospective study of UK healthcare workers (HCWs) (Protective Immunity from T Cells in Healthcare Workers [PITCH], within the larger SARS-CoV-2 Immunity and Reinfection Evaluation [SIREN] study), we previously observed that prior infection strongly affected subsequent cellular and humoral immunity induced after long and short dosing intervals of BNT162b2 (Pfizer/BioNTech) vaccination. METHODS: Here, we report longer follow-up of 684 HCWs in this cohort over 6-9 months following two doses of BNT162b2 or AZD1222 (Oxford/AstraZeneca) vaccination and up to 6 months following a subsequent mRNA booster vaccination. FINDINGS: We make three observations: first, the dynamics of humoral and cellular responses differ; binding and neutralizing antibodies declined, whereas T and memory B cell responses were maintained after the second vaccine dose. Second, vaccine boosting restored immunoglobulin (Ig) G levels; broadened neutralizing activity against variants of concern, including Omicron BA.1, BA.2, and BA.5; and boosted T cell responses above the 6-month level after dose 2. Third, prior infection maintained its impact driving larger and broader T cell responses compared with never-infected people, a feature maintained until 6 months after the third dose. CONCLUSIONS: Broadly cross-reactive T cell responses are well maintained over time-especially in those with combined vaccine and infection-induced immunity ("hybrid" immunity)-and may contribute to continued protection against severe disease

    SARS-CoV-2-specific immune responses and clinical outcomes after COVID-19 vaccination in patients with immune-suppressive disease

    Get PDF
    Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immune responses and infection outcomes were evaluated in 2,686 patients with varying immune-suppressive disease states after administration of two Coronavirus Disease 2019 (COVID-19) vaccines. Overall, 255 of 2,204 (12%) patients failed to develop anti-spike antibodies, with an additional 600 of 2,204 (27%) patients generating low levels (&lt;380 AU ml−1). Vaccine failure rates were highest in ANCA-associated vasculitis on rituximab (21/29, 72%), hemodialysis on immunosuppressive therapy (6/30, 20%) and solid organ transplant recipients (20/81, 25% and 141/458, 31%). SARS-CoV-2-specific T cell responses were detected in 513 of 580 (88%) patients, with lower T cell magnitude or proportion in hemodialysis, allogeneic hematopoietic stem cell transplantation and liver transplant recipients (versus healthy controls). Humoral responses against Omicron (BA.1) were reduced, although cross-reactive T cell responses were sustained in all participants for whom these data were available. BNT162b2 was associated with higher antibody but lower cellular responses compared to ChAdOx1 nCoV-19 vaccination. We report 474 SARS-CoV-2 infection episodes, including 48 individuals with hospitalization or death from COVID-19. Decreased magnitude of both the serological and the T cell response was associated with severe COVID-19. Overall, we identified clinical phenotypes that may benefit from targeted COVID-19 therapeutic strategies

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570
    • 

    corecore