18,301 research outputs found

    The Phoenix survey: the pairing fraction of faint radio sources

    Get PDF
    The significance of tidal interactions in the evolution of the faint radio population (sub-mJy) is studied using a deep and homogeneous radio survey (1.4 GHz), covering an area of 3.14 deg2^2 and complete to a flux density of 0.4 mJy. Optical photometric and spectroscopic data are also available for this sample. A statistical approach is employed to identify candidate physical associations between radio sources and optically selected `field' galaxies. We find an excess of close pairs around optically identified faint radio sources, albeit at a low significance level, implying that the pairing fraction of the sub-mJy radio sources is similar to that of `field' galaxies (at the same magnitude limit) but higher than that of local galaxies.Comment: 5 pages, 4 figures. Accepted for publication in MNRAS Letter

    Validation of scramjet exhaust simulation technique at Mach 6

    Get PDF
    Current design philosophy for hydrogen-fueled, scramjet-powered hypersonic aircraft results in configurations with strong couplings between the engine plume and vehicle aerodynamics. The experimental verification of the scramjet exhaust simulation is described. The scramjet exhaust was reproduced for the Mach 6 flight condition by the detonation tube simulator. The exhaust flow pressure profiles, and to a large extent the heat transfer rate profiles, were then duplicated by cool gas mixtures of Argon and Freon 13B1 or Freon 12. The results of these experiments indicate that a cool gas simulation of the hot scramjet exhaust is a viable simulation technique except for phenomena which are dependent on the wall temperature relative to flow temperature

    Critical slowing down and hyperuniformity on approach to jamming

    Full text link
    Hyperuniformity characterizes a state of matter that is poised at a critical point at which density or volume-fraction fluctuations are anomalously suppressed at infinite wavelengths. Recently, much attention has been given to the link between strict jamming and hyperuniformity in frictionless hard-particle packings. Doing so requires one to study very large packings, which can be difficult to jam properly. We modify the rigorous linear programming method of Donev et al. [J. Comp. Phys. 197, 139 (2004)] in order to test for jamming in putatively jammed packings of hard-disks in two dimensions. We find that various standard packing protocols struggle to reliably create packings that are jammed for even modest system sizes; importantly, these packings appear to be jammed by conventional tests. We present evidence that suggests that deviations from hyperuniformity in putative maximally random jammed (MRJ) packings can in part be explained by a shortcoming in generating exactly-jammed configurations due to a type of "critical slowing down" as the necessary rearrangements become difficult to realize by numerical protocols. Additionally, various protocols are able to produce packings exhibiting hyperuniformity to different extents, but this is because certain protocols are better able to approach exactly-jammed configurations. Nonetheless, while one should not generally expect exact hyperuniformity for disordered packings with rattlers, we find that when jamming is ensured, our packings are very nearly hyperuniform, and deviations from hyperuniformity correlate with an inability to ensure jamming, suggesting that strict jamming and hyperuniformity are indeed linked. This raises the possibility that the ideal MRJ packings have no rattlers. Our work provides the impetus for the development of packing algorithms that produce large disordered strictly jammed packings that are rattler-free.Comment: 15 pages, 11 figures. Accepted for publication in Phys. Rev.
    corecore