586 research outputs found

    Information for onchocerciasis control

    Get PDF
    Mectizan® has been donated for the control of onchocerciasis for over twenty years, and also for the elimination of lymphatic filariasis for the last ten years. But how much is needed?

    Engaging Schools in Cutting Edge Science: From the Educator’s Perspective

    Get PDF
    The field of scientific research, by definition, is constantly developing new techniques and adapting current thinking in order to address pertinent issues. With curriculum constraints and exam-based teaching, it is becoming increasingly challenging to engage young people in new ideas and methods, and thus facilitate them in becoming the scientists of the future. A new project developed though collaboration between the Cothill Educational Trust and The Natural History Museum aims to develop a deeper understanding of biodiversity science in pre-GCSE aged children, kindling a real excitement for the science subjects at school

    Onchocerciasis: the beginning of the end?

    Get PDF
    With a concerted effort, onchocerciasis could be the first blinding disease to be eradicated

    Onchocerciasis then and now: achievements, priorities and challenges

    Get PDF
    Although river blindness is still endemic in many African countries, it is still possible that it will be eliminated by 2025. Doing so will require political stability and an unwavering focus on the goal

    From river blindness control to elimination: bridge over troubled water.

    Get PDF
    BACKGROUND: An estimated 25 million people are currently infected with onchocerciasis (a parasitic infection caused by the filarial nematode Onchocerca volvulus and transmitted by Simulium vectors), and 99% of these are in sub-Saharan Africa. The African Programme for Onchocerciasis Control closed in December 2015 and the World Health Organization has established a new structure, the Expanded Special Project for the Elimination of Neglected Tropical Diseases for the coordination of technical support for activities focused on five neglected tropical diseases in Africa, including onchocerciasis elimination. AIMS: In this paper we argue that despite the delineation of a reasonably well-defined elimination strategy, its implementation will present particular difficulties in practice. We aim to highlight these in an attempt to ensure that they are well understood and that effective plans can be laid to solve them by the countries concerned and their international partners. CONCLUSIONS: A specific concern is the burden of disease caused by onchocerciasis-associated epilepsy in hyperendemic zones situated in countries experiencing difficulties in strengthening their onchocerciasis control programmes. These difficulties should be identified and programmes supported during the transition from morbidity control to interruption of transmission and elimination

    Detection of climate change-driven trends in phytoplankton phenology

    Get PDF
    The timing of the annual phytoplankton spring bloom is likely to be altered in response to climate change. Quantifying that response has, however, been limited by the typically coarse temporal resolution (monthly) of global climate models. Here, we use higher resolution model output (maximum 5 days) to investigate how phytoplankton bloom timing changes in response to projected 21st century climate change, and how the temporal resolution of data influences the detection of long-term trends. We find that bloom timing generally shifts later at mid-latitudes and earlier at high and low latitudes by ~5 days per decade to 2100. The spatial patterns of bloom timing are similar in both low (monthly) and high (5 day) resolution data, although initiation dates are later at low resolution. The magnitude of the trends in bloom timing from 2006 to 2100 is very similar at high and low resolution, with the result that the number of years of data needed to detect a trend in phytoplankton phenology is relatively insensitive to data temporal resolution. We also investigate the influence of spatial scales on bloom timing and find that trends are generally more rapidly detectable after spatial averaging of data. Our results suggest that, if pinpointing the start date of the spring bloom is the priority, the highest possible temporal resolution data should be used. However, if the priority is detecting long-term trends in bloom timing, data at a temporal resolution of 20 days are likely to be sufficient. Furthermore, our results suggest that data sources which allow for spatial averaging will promote more rapid trend detection

    The construction and evaluation of a device for mechanomyography in anaesthetized Göttingen minipigs

    Get PDF
    OBJECTIVE: To devise a method for assessing evoked muscle strength on nerve stimulation [mechanomyography (MMG)] in the anaesthetized minipig. STUDY DESIGN: Prospective observational. ANIMALS: Sixty male Göttingen minipigs weighing 10.5–26.0 kg. METHODS: After cadaveric studies, a limb fixation device was constructed which allowed the twitch responses of the pelvic limb digital extensor muscles to be measured by force-displacement transduction in response to supramaximal train-of-four (TOF) stimulation of the common peroneal nerve. The device was tested in 60 minipigs weighing 10.5–26.0 kg positioned in dorsal recumbency. RESULTS: The technique recorded the MMG of the common peroneal-pelvic limb digital extensor nerve-muscle unit for up to 12 hours during which twitch height remained constant in 18 animals in which single twitch duration was <300–500 ms. In 42, in which twitch duration was >300–500 ms, 2 Hz nerve stimulation caused progressive baseline elevation (reverse fade) necessitating a modified signal capture method for TOF ratio (TOFR) computation. However, T1 was unaffected. The mean (range) of the TOFR in pigs with reverse fade was 1.2 (1.1–1.3). CONCLUSIONS AND CLINICAL RELEVANCE: The technique allowed MMG recording in unparalysed pigs in response to TOF nerve stimulation and revealed a hitherto unreported complication of MMG monitoring using TOF in animals: reverse fade. This complicated TOFR calculation
    • …
    corecore