9 research outputs found
Provenance and paleogeography of post-Middle Ordovician, pre-Devonian sedimentary basins on the Gander composite terrane, eastern and east-central Maine: implications for Silurian tectonics in the northern Appalachians
Recent mapping in eastern and east-central Maine addresses long-standing regional correlation issues and permits reconstruction of post-Middle Ordovician, pre-Devonian paleogeography of sedimentary basins on the Ganderian composite terrane. Two major Late Ordovician-Silurian depocenters are recognized in eastern Maine and western New Brunswick separated by an emergent Miramichi terrane: the Fredericton trough to the southeast and a single basin comprising the Central Maine and Aroostook-Matapedia sequences to the northwest. This Central Maine/Aroostook-Matapedia (CMAM) basin received sediment from both the Miramichi highland to the east and highlands and islands to the west, including the pre-Late Ordovician Boundary Mountains, Munsungun-Pennington, and Weeksboro-Lunksoos terranes. Lithofacies in the Fredericton trough are truncated and telescoped by faulting along its flanks but suggest a similar basin that received sediment from highlands to the west (Miramichi) and east (St. Croix).Deposition ended in the Fredericton trough following burial and deformation in the Late Silurian, but continued in the CMAM basin until Early Devonian Acadian folding. A westward-migrating Acadian orogenic wedge provided a single eastern source of sediment for the composite CMAM basin after the Salinic/Early Acadian event, replacing the earlier, more local sources. The CMAM, Fredericton, and Connecticut Valley-Gaspé depocenters were active immediately following the Taconian orogeny and probably formed during extension related to post-Taconian plate adjustments. These basins thus predate Acadian foreland sedimentation.Structural analysis and seismic reflection profiles indicate a greater degree of post-depositional crustal shortening than previously interpreted. Late Acadian and post-Acadian strike-slip faulting on the Norumbega and Central Maine Boundary fault systems distorted basin geometries but did not disturb paleogeographic components drastically
Tectonic fabrics of the Passadumkeag River pluton, Bottle Lake complex, Springfield and Scraggly Lake 15-minute quadrangles
Maine Geological Survey, Open-File Report 90-25b. Discussion of brittle and ductile shear fabrics and relation to Late Acadian tectonics in eastern Maine. Includes bedrock geologic map.https://digitalmaine.com/mgs_maps/1204/thumbnail.jp
Tectonic fabrics of the Passadumkeag River pluton, Bottle Lake complex, Springfield and Scraggly Lake 15-minute quadrangles
Maine Geological Survey, Open-File Report 90-25b. Discussion of brittle and ductile shear fabrics and relation to Late Acadian tectonics in eastern Maine. Includes bedrock geologic map.https://digitalmaine.com/mgs_maps/1204/thumbnail.jp
Bedrock Geology of the Springfield 15′ quadrangle, Maine
Maine Geological Survey, Open-File Report 20-22.https://digitalmaine.com/mgs_publications/1601/thumbnail.jp
Bedrock Geology of the Springfield 15′ quadrangle, Maine
Maine Geological Survey, Open-File Report 20-22.https://digitalmaine.com/mgs_publications/1601/thumbnail.jp
SHRIMP U–Pb zircon evidence for age, provenance, and tectonic history of early Paleozoic Ganderian rocks, east-central Maine, USA
SHRIMP U–Pb zircon ages from Ganderia in eastern Maine clarify the ages and provenance of basement units in the Miramichi and St. Croix terranes and of cover rocks in the Fredericton trough and Central Maine/Aroostook-Matapedia basin (CMAM). These new data constrain timing of orogenic events and help understand the origin of the cover rock depocenters.Detrital zircon data generally confirm suggested ages of the formations sampled. Zircon grains with ages of ca. 430 Ma in both depocenters, only slightly older than their host rocks, were probably derived from the earliest volcanic eruptions in the Eastport-Mascarene belt. Their presence indicates that unnamed CMAM sandstone units may be as young as Pridoli and their absence from the Appleton Ridge and Digdeguash formations suggests that these formations are older than initial Eastport-Mascarene volcanism. Detrital and volcanic zircon ages confirm a Late Cambrian to Middle Ordovician age for the Miramichi succession and date Miramichi volcanism at 469.3 ± 4.6 Ma. In the St. Croix terrane, zircon grain with an age of 477.4 ± 3.7 Ma from an ashfall at the base of the Kendall Mountain Formation and age spectra and fossils from overlying quartz arenite suggest that the formation may span Floian to Sandbian time. The main source of CMAM and Fredericton sediment was recycled Ganderian basement from terranes emergent after Late Ordovician orogenesis, supplemented by Silurian tephra. Zircon barcodes and lithofacies and tectonic models suggest little, if any, input from Laurentia or Avalonia.Zircon- and fossil-based ages indicate coeval Upper Ordovician deformation in the St. Croix (ca. 453 to 442 Ma) and Miramichi (ca. 453 to 446 Ma) terranes. Salinic folding in the southeastern Fredericton trough is bracketed between the 421.9 ± 2.4 Ma age of the Pocomoonshine gabbro-diorite and 430 Ma detrital zircons in the Flume Ridge Formation. Zircon ages, lithofacies analysis, and paleontological evidence support the origin of the Fredericton trough as a Salinic foredeep. The CMAM basin cannot have been an Acadian foreland basin, as sedimentation began millions of years before Acadian subduction
SHRIMP U–Pb zircon evidence for age, provenance, and tectonic history of early Paleozoic Ganderian rocks, east-central Maine, USA
SHRIMP U–Pb zircon ages from Ganderia in eastern Maine clarify the ages and provenance of basement units in the Miramichi and St. Croix terranes and of cover rocks in the Fredericton trough and Central Maine/Aroostook-Matapedia basin (CMAM). These new data constrain timing of orogenic events and help understand the origin of the cover rock depocenters. Detrital zircon data generally confirm suggested ages of the formations sampled. Zircon grains with ages of ca. 430 Ma in both depocenters, only slightly older than their host rocks, were probably derived from the earliest volcanic eruptions in the Eastport-Mascarene belt. Their presence indicates that unnamed CMAM sandstone units may be as young as Pridoli and their absence from the Appleton Ridge and Digdeguash formations suggests that these formations are older than initial Eastport-Mascarene volcanism. Detrital and volcanic zircon ages confirm a Late Cambrian to Middle Ordovician age for the Miramichi succession and date Miramichi volcanism at 469.3 ± 4.6 Ma. In the St. Croix terrane, zircon grain with an age of 477.4 ± 3.7 Ma from an ashfall at the base of the Kendall Mountain Formation and age spectra and fossils from overlying quartz arenite suggest that the formation may span Floian to Sandbian time. The main source of CMAM and Fredericton sediment was recycled Ganderian basement from terranes emergent after Late Ordovician orogenesis, supplemented by Silurian tephra. Zircon barcodes and lithofacies and tectonic models suggest little, if any, input from Laurentia or Avalonia. Zircon- and fossil-based ages indicate coeval Upper Ordovician deformation in the St. Croix (ca. 453 to 442 Ma) and Miramichi (ca. 453 to 446 Ma) terranes. Salinic folding in the southeastern Fredericton trough is bracketed between the 421.9 ± 2.4 Ma age of the Pocomoonshine gabbro-diorite and 430 Ma detrital zircons in the Flume Ridge Formation. Zircon ages, lithofacies analysis, and paleontological evidence support the origin of the Fredericton trough as a Salinic foredeep. The CMAM basin cannot have been an Acadian foreland basin, as sedimentation began millions of years before Acadian subduction