380 research outputs found

    Changes in vegetation and soil characteristics in coastal sand dunes along a gradient of atmospheric nitrogen deposition

    Get PDF
    A field survey was conducted to detect signals of atmospheric nitrogen (N) in 11 dune systems along a nitrogen deposition gradient in the United Kingdom. In the mobile and semi-fixed dunes, above-ground biomass was positively related to N inputs. This increase was largely due to increased height and cover of Ammophila arenaria. In the long term, this increased biomass may lead to increased organic matter accumulation and consequently accelerated soil development. In the fixed dunes, above ground biomass also showed a positive relationship with N inputs as did soil C : N ratio while soil available N was negatively related to N inputs. Plant species richness was negatively related to N inputs. In the dune slacks, while soil and bulk vegetation parameters showed no relationship with N inputs, cover of Carex arenaria and Hypochaeris radicata increased. Site mean Ellenberg N numbers showed no relationship with N deposition either within habitats or across the whole dataset. Neither abundance-weighting nor inclusion of the Siebel numbers for bryophytes improved the relationship. The survey reveals that the relationships of soil and vegetation with atmospheric N deposition vary between sand dune habitats but, despite this variability, clear correlations with N inputs exist. While this survey cannot establish causality, on the basis of the relationships observed we suggest a critical load range of 10 - 20 kg N ha(-1) yr(-1) for coastal sand dunes in the UK

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider

    Global estimates of pregnancies at risk of Plasmodium falciparum and Plasmodium vivax infection in 2020 and changes in risk patterns since 2000.

    Get PDF
    BACKGROUND: Women are at risk of severe adverse pregnancy outcomes attributable to Plasmodium spp. infection in malaria-endemic areas. Malaria control efforts since 2000 have aimed to reduce this burden of disease. METHODS: We used data from the Malaria Atlas Project and WorldPop to calculate global pregnancies at-risk of Plasmodium spp. infection. We categorised pregnancies as occurring in areas of stable and unstable P. falciparum and P. vivax transmission. We further stratified stable endemicity as hypo-endemic, meso-endemic, hyper-endemic, or holo-endemic, and estimated pregnancies at risk in 2000, 2005, 2010, 2015, 2017, and 2020. FINDINGS: In 2020, globally 120.4M pregnancies were at risk of P. falciparum, two-thirds (81.0M, 67.3%) were in areas of stable transmission; 85 2M pregnancies were at risk of P. vivax, 93.9% (80.0M) were in areas of stable transmission. An estimated 64.6M pregnancies were in areas with both P. falciparum and P. vivax transmission. The number of pregnancies at risk of each of P. falciparum and P. vivax worldwide decreased between 2000 and 2020, with the exception of sub-Saharan Africa, where the total number of pregnancies at risk of P. falciparum increased from 37 3M in 2000 to 52 4M in 2020. INTERPRETATION: Historic investments in malaria control have reduced the number of women at risk of malaria in pregnancy in all endemic regions except sub-Saharan Africa. Population growth in Africa has outpaced reductions in malaria prevalence. Interventions that reduce the risk of malaria in pregnancy are needed as much today as ever

    Estimating Individual and Household Reproduction Numbers in an Emerging Epidemic

    Get PDF
    Reproduction numbers, defined as averages of the number of people infected by a typical case, play a central role in tracking infectious disease outbreaks. The aim of this paper is to develop methods for estimating reproduction numbers which are simple enough that they could be applied with limited data or in real time during an outbreak. I present a new estimator for the individual reproduction number, which describes the state of the epidemic at a point in time rather than tracking individuals over time, and discuss some potential benefits. Then, to capture more of the detail that micro-simulations have shown is important in outbreak dynamics, I analyse a model of transmission within and between households, and develop a method to estimate the household reproduction number, defined as the number of households infected by each infected household. This method is validated by numerical simulations of the spread of influenza and measles using historical data, and estimates are obtained for would-be emerging epidemics of these viruses. I argue that the household reproduction number is useful in assessing the impact of measures that target the household for isolation, quarantine, vaccination or prophylactic treatment, and measures such as social distancing and school or workplace closures which limit between-household transmission, all of which play a key role in current thinking on future infectious disease mitigation

    Impact of herpes zoster and post-herpetic neuralgia on patients’ quality of life: a patient-reported outcomes survey

    Get PDF
    Background: The impact of herpes zoster (HZ) and post-herpetic neuralgia (PHN) on patients’ quality of life (QoL) is currently poorly documented. Subjects and methods: Telephone interviews in Germany identified patients ≥50 years old with painful HZ diagnosed during the previous 5 years. Bespoke questions evaluated previous HZ episodes. Results: Of 11,009 respondents, 280 met the screening criteria, and 32 (11%) developed PHN. PHN was associated with significantly worse outcomes than HZ (all P < 0.05). Mean pain scores associated with PHN and HZ, respectively, were 7.1 and 6.2 (average) and 8.2 and 7.0 (worst). Many patients with PHN (91%) and HZ (73%) experienced problems with daily activities, including work, studies, housework, family and leisure activities. Mean pain interference scores in patients with PHN versus HZ were highest for sleep (6.5 versus 4.9), normal work (6.1 versus 4.4) and mood (5.9 versus 4.4). Most employed interviewees with PHN (70%) and HZ (64%) stopped work during the disease. Pain and QoL outcomes were not significantly different between all patients versus those diagnosed during the previous 12 months or between patients aged 50–59 years versus ≥60 years. Conclusions: HZ causes substantial pain, which seriously interferes with many aspects of daily life, particularly in patients with PHN

    Global Patterns in Seasonal Activity of Influenza A/H3N2, A/H1N1, and B from 1997 to 2005: Viral Coexistence and Latitudinal Gradients

    Get PDF
    Despite a mass of research on the epidemiology of seasonal influenza, overall patterns of infection have not been fully described on broad geographic scales and for specific types and subtypes of the influenza virus. Here we provide a descriptive analysis of laboratory-confirmed influenza surveillance data by type and subtype (A/H3N2, A/H1N1, and B) for 19 temperate countries in the Northern and Southern hemispheres from 1997 to 2005, compiled from a public database maintained by WHO (FluNet). Key findings include patterns of large scale co-occurrence of influenza type A and B, interhemispheric synchrony for subtype A/H3N2, and latitudinal gradients in epidemic timing for type A. These findings highlight the need for more countries to conduct year-round viral surveillance and report reliable incidence data at the type and subtype level, especially in the Tropics
    corecore