2,551 research outputs found

    Control of an atom laser using feedback

    Get PDF
    A generalised method of using feedback to control Bose-Einstein condensates is introduced. The condensates are modelled by the Gross-Pitaevskii equation, so only semiclassical fluctations can be suppressed, and back-action from the measurement is ignored. We show that for any available control, a feedback scheme can be found to reduce the energy while the appropriate moment is still dynamic. We demonstrate these schemes by considering a condensate trapped in a harmonic potential that can be modulated in strength and position. The formalism of our feedback scheme also allows the inclusion of certain types of non-linear controls. If the non-linear interaction between the atoms can be controlled via a Feshbach resonance, we show that the feedback process can operate with a much higher efficiency.Comment: 6 pages, 7 figure

    On the transverse mode of an atom laser

    Full text link
    The transverse mode of an atom laser beam that is outcoupled from a Bose-Einstein condensate is investigated and is found to be strongly determined by the mean--field interaction of the laser beam with the condensate. Since for repulsive interactions the geometry of the coupling scheme resembles an interferometer in momentum space, the beam is found show filamentation. Observation of this effect would prove the transverse coherence of an atom laser beam.Comment: 4 pages, 4 figure

    Effects of interatomic collisions on atom laser outcoupling

    Full text link
    We present a computational approach to the outcoupling in a simple one-dimensional atom laser model, the objective being to circumvent mathematical difficulties arising from the breakdown of the Born and Markov approximations. The approach relies on the discretization of the continuum representing the reservoir of output modes, which allows the treatment of arbitrary forms of outcoupling as well as the incorporation of non-linear terms in the Hamiltonian, associated with interatomic collisions. By considering a single-mode trapped condensate, we study the influence of elastic collisions between trapped and free atoms on the quasi steady-state population of the trap, as well as the energy distribution and the coherence of the outcoupled atoms.Comment: 25 pages, 11 figures, to appear in J. Phys.

    Adiabatic Output Coupling of a Bose Gas at Finite Temperatures

    Get PDF
    We develop a general theory of adiabatic output coupling from trapped atomic Bose-Einstein Condensates at finite temperatures. For weak coupling, the output rate from the condensate, and the excited levels in the trap, settles in a time proportional to the inverse of the spectral width of the coupling to the output modes. We discuss the properties of the output atoms in the quasi-steady-state where the population in the trap is not appreciably depleted. We show how the composition of the output beam, containing condensate and thermal component, may be controlled by changing the frequency of the output coupler. This composition determines the first and second order coherence of the output beam. We discuss the changes in the composition of the bose gas left in the trap and show how nonresonant output coupling can stimulate either the evaporation of thermal excitations in the trap or the growth of non-thermal excitations, when pairs of correlated atoms leave the condensate.Comment: 22 pages, 6 Figs. To appear in Physical Review A All the typos from the previous submission have been fixe

    Three-body problem for ultracold atoms in quasi-one-dimensional traps

    Full text link
    We study the three-body problem for both fermionic and bosonic cold atom gases in a parabolic transverse trap of lengthscale aa_\perp. For this quasi-one-dimensional (1D) problem, there is a two-body bound state (dimer) for any sign of the 3D scattering length aa, and a confinement-induced scattering resonance. The fermionic three-body problem is universal and characterized by two atom-dimer scattering lengths, aada_{ad} and badb_{ad}. In the tightly bound `dimer limit', a/aa_\perp/a\to\infty, we find bad=0b_{ad}=0, and aada_{ad} is linked to the 3D atom-dimer scattering length. In the weakly bound `BCS limit', a/aa_\perp/a\to-\infty, a connection to the Bethe Ansatz is established, which allows for exact results. The full crossover is obtained numerically. The bosonic three-body problem, however, is non-universal: aada_{ad} and badb_{ad} depend both on a/aa_\perp/a and on a parameter RR^* related to the sharpness of the resonance. Scattering solutions are qualitatively similar to fermionic ones. We predict the existence of a single confinement-induced three-body bound state (trimer) for bosons.Comment: 20 pages, 6 figures, accepted for publication in PRA, appendix on the derivation of an integral formula for the Hurvitz zeta functio

    Substantial Dose-response Relationship with Clinical Outcome for Lung Stereotactic Body Radiotherapy (SBRT) Delivered via Online Image Guidance

    Get PDF
    Purpose: To examine potential tumor dose-response relationships with various non-small cell lung cancer (NSCLC) SBRT fractionation regimens delivered with online CT-based image guidance. American Society for Therapeutic Radiation Oncology (ASTRO) 52nd Annual Meeting October 31 - November 4, San Diego, C

    An integrated atom-photon junction

    Full text link
    Photonic chips that integrate guides, switches, gratings and other components, process vast amounts of information rapidly on a single device. A new branch of this technology becomes possible if the light is coupled to cold atoms in a junction of small enough cross section, so that small numbers of photons interact appreciably with the atoms. Cold atoms are among the most sensitive of metrological tools and their quantum nature also provides a basis for new information processing methods. Here we demonstrate a photonic chip which provides multiple microscopic junctions between atoms and photons. We use the absorption of light at a junction to reveal the presence of one atom on average. Conversely, we use the atoms to probe the intensity and polarisation of the light. Our device paves the way for a new type of chip with interconnected circuits of atoms and photons.Comment: 5 pages, 4 figure. Submitted to Nature Photonic

    Atom laser coherence and its control via feedback

    Full text link
    We present a quantum-mechanical treatment of the coherence properties of a single-mode atom laser. Specifically, we focus on the quantum phase noise of the atomic field as expressed by the first-order coherence function, for which we derive analytical expressions in various regimes. The decay of this function is characterized by the coherence time, or its reciprocal, the linewidth. A crucial contributor to the linewidth is the collisional interaction of the atoms. We find four distinct regimes for the linewidth with increasing interaction strength. These range from the standard laser linewidth, through quadratic and linear regimes, to another constant regime due to quantum revivals of the coherence function. The laser output is only coherent (Bose degenerate) up to the linear regime. However, we show that application of a quantum nondemolition measurement and feedback scheme will increase, by many orders of magnitude, the range of interaction strengths for which it remains coherent.Comment: 15 pages, 6 figures, revtex

    Fos-expressing neuronal ensemble in rat ventromedial prefrontal cortex encodes cocaine seeking but not food seeking in rats

    Get PDF
    Neuronal ensembles in ventromedial prefrontal cortex (vmPFC) play a role in both cocaine and palatable food seeking. However, it is unknown whether similar or different vmPFC neuronal ensembles mediate food and cocaine seeking. Here, we used the Daun02 inactivation procedure to assess whether the neuronal ensembles mediating food and cocaine seeking can be functionally distinguished. We trained male and female Fos-LacZ rats to self-administer palatable food pellets and cocaine on alternating days for 18 days. We then exposed the rats to a brief nonreinforced food- or cocaine-seeking test to induce Fos and β-gal in neuronal ensembles associated with food or cocaine seeking, respectively and infused Daun02 into vmPFC to ablate the β-gal-expressing ensembles. Two days later, we tested the rats for food or cocaine seeking under extinction conditions. Although inactivation of the food-seeking ensemble did not influence food or cocaine seeking, inactivation of the cocaine-seeking ensemble reduced cocaine seeking but not food seeking. Results indicate that the neuronal ensemble activated by cocaine seeking in vmPFC is functionally separate from the ensemble activated by food seeking
    corecore