12 research outputs found

    Fence management and time since pack formation influence African wild dog escapes from protected areas in South Africa

    Get PDF
    In human-dominated and highly fragmented landscapes, keeping wildlife within reserve boundaries is vital for conservation success. In South Africa, fences are a widely employed conservation management tool for protected areas and are successful in mitigating human-wildlife conflict. However, fences are permeable, and predators are able to cross through reserve fences. African wild dogs (Lycaon pictus) often leave fenced boundaries, resulting in high capture and translocation costs. Moreover, when wild dog packs (up to 30 individuals) leave fenced reserves they enter human-dominated landscapes where they face strong persecution and livestock predation incurs high costs. The factors driving packs to leave managed reserves are poorly understood, thus, to effectively manage wild dogs in fenced systems, it is important to understand why they leave reserve boundaries. There are several hypotheses as to why wild dogs cross through reserve fences, including inter- and intra-specific competition, social behaviour, management, prey density and environmental variability. Using a long-term dataset comprising 32 resident packs across five reserves, we investigated the relative strength of these hypotheses on the probability of wild dogs exiting a fenced reserve. During the 14-year study period, we recorded 154 exit events. We found that the interaction of fence integrity and time since pack formation were the primary factors affecting the probability of a pack leaving a reserve. When fence integrity was poor, escape probability decreased with pack age likely due to the exploratory behaviour of new packs. When fence integrity was average, escape probability increased with pack age likely due to the fitness benefits of holding larger and more exclusive territories as packs age. When fence integrity was good, the probability of a pack escaping was very low (only 1% occurrence). The implications of this research suggest that the primary management consideration for reducing wild dog escapes from fenced reserves should be maintaining adequate reserve-wide fence integrity, rather than focusing on social structure or drivers of inter- and intra-specific competition

    Evaluating the potential for the environmentally sustainable control of foot and mouth disease in Sub-Saharan Africa

    Get PDF
    Strategies to control transboundary diseases have in the past generated unintended negative consequences for both the environment and local human populations. Integrating perspectives from across disciplines, including livestock, veterinary and conservation sectors, is necessary for identifying disease control strategies that optimise environmental goods and services at the wildlife-livestock interface. Prompted by the recent development of a global strategy for the control and elimination of foot-and-mouth disease (FMD), this paper seeks insight into the consequences of, and rational options for potential FMD control measures in relation to environmental, conservation and human poverty considerations in Africa. We suggest a more environmentally nuanced process of FMD control that safe-guards the integrity of wild populations and the ecosystem dynamics on which human livelihoods depend while simultaneously improving socio-economic conditions of rural people. In particular, we outline five major issues that need to be considered: 1) improved understanding of the different FMD viral strains and how they circulate between domestic and wildlife populations; 2) an appreciation for the economic value of wildlife for many African countries whose presence might preclude the country from ever achieving an FMD-free status; 3) exploring ways in which livestock production can be improved without compromising wildlife such as implementing commodity-based trading schemes; 4) introducing a participatory approach involving local farmers and the national veterinary services in the control of FMD; and 5) finally the possibility that transfrontier conservation might offer new hope of integrating decision-making at the wildlife-livestock interface

    Tracking animal movements using biomarkers in tail hairs: a novel approach for animal geolocating from sulfur isoscapes.

    Get PDF
    This research article published by Movement Ecology, 2020Background Current animal tracking studies are most often based on the application of external geolocators such as GPS and radio transmitters. While these technologies provide detailed movement data, they are costly to acquire and maintain, which often restricts sample sizes. Furthermore, deploying external geolocators requires physically capturing and recapturing of animals, which poses an additional welfare concern. Natural biomarkers provide an alternative, non-invasive approach for addressing a range of geolocation questions and can, because of relatively low cost, be collected from many individuals thereby broadening the scope for population-wide inference. Methods We developed a low-cost, minimally invasive method for distinguishing between local versus non-local movements of cattle using sulfur isotope ratios (δ34S) in cattle tail hair collected in the Greater Serengeti Ecosystem, Tanzania. Results We used a Generalized Additive Model to generate a predicted δ34S isoscape across the study area. This isoscape was constructed using spatial smoothers and underpinned by the positive relationship between δ34S values and lithology. We then established a strong relationship between δ34S from recent sections of cattle tail hair and the δ34S from grasses sampled in the immediate vicinity of an individual’s location, suggesting δ34S in the hair reflects the δ34S in the environment. By combining uncertainty in estimation of the isoscape, with predictions of tail hair δ34S given an animal’s position in the isoscape we estimated the anisotropic distribution of travel distances across the Serengeti ecosystem sufficient to detect movement using sulfur stable isotopes. Conclusions While the focus of our study was on cattle, this approach can be modified to understand movements in other mobile organisms where the sulfur isoscape is sufficiently heterogeneous relative to the spatial scale of animal movements and where tracking with traditional methods is difficult

    Behavioral responses of terrestrial mammals to COVID-19 lockdowns

    Get PDF
    DATA AND MATERIALS AVAILABILITY : The full dataset used in the final analyses (33) and associated code (34) are available at Dryad. A subset of the spatial coordinate datasets is available at Zenodo (35). Certain datasets of spatial coordinates will be available only through requests made to the authors due to conservation and Indigenous sovereignty concerns (see table S1 for more information on data use restrictions and contact information for data requests). These sensitive data will be made available upon request to qualified researchers for research purposes, provided that the data use will not threaten the study populations, such as by distribution or publication of the coordinates or detailed maps. Some datasets, such as those overseen by government agencies, have additional legal restrictions on data sharing, and researchers may need to formally apply for data access. Collaborations with data holders are generally encouraged, and in cases where data are held by Indigenous groups or institutions from regions that are under-represented in the global science community, collaboration may be required to ensure inclusion.COVID-19 lockdowns in early 2020 reduced human mobility, providing an opportunity to disentangle its effects on animals from those of landscape modifications. Using GPS data, we compared movements and road avoidance of 2300 terrestrial mammals (43 species) during the lockdowns to the same period in 2019. Individual responses were variable with no change in average movements or road avoidance behavior, likely due to variable lockdown conditions. However, under strict lockdowns 10-day 95th percentile displacements increased by 73%, suggesting increased landscape permeability. Animals’ 1-hour 95th percentile displacements declined by 12% and animals were 36% closer to roads in areas of high human footprint, indicating reduced avoidance during lockdowns. Overall, lockdowns rapidly altered some spatial behaviors, highlighting variable but substantial impacts of human mobility on wildlife worldwide.The Radboud Excellence Initiative, the German Federal Ministry of Education and Research, the National Science Foundation, Serbian Ministry of Education, Science and Technological Development, Dutch Research Council NWO program “Advanced Instrumentation for Wildlife Protection”, Fondation Segré, RZSS, IPE, Greensboro Science Center, Houston Zoo, Jacksonville Zoo and Gardens, Nashville Zoo, Naples Zoo, Reid Park Zoo, Miller Park, WWF, ZCOG, Zoo Miami, Zoo Miami Foundation, Beauval Nature, Greenville Zoo, Riverbanks zoo and garden, SAC Zoo, La Passarelle Conservation, Parc Animalier d’Auvergne, Disney Conservation Fund, Fresno Chaffee zoo, Play for nature, North Florida Wildlife Center, Abilene Zoo, a Liber Ero Fellowship, the Fish and Wildlife Compensation Program, Habitat Conservation Trust Foundation, Teck Coal, and the Grand Teton Association. The collection of Norwegian moose data was funded by the Norwegian Environment Agency, the German Ministry of Education and Research via the SPACES II project ORYCS, the Wyoming Game and Fish Department, Wyoming Game and Fish Commission, Bureau of Land Management, Muley Fanatic Foundation (including Southwest, Kemmerer, Upper Green, and Blue Ridge Chapters), Boone and Crockett Club, Wyoming Wildlife and Natural Resources Trust, Knobloch Family Foundation, Wyoming Animal Damage Management Board, Wyoming Governor’s Big Game License Coalition, Bowhunters of Wyoming, Wyoming Outfitters and Guides Association, Pope and Young Club, US Forest Service, US Fish and Wildlife Service, the Rocky Mountain Elk Foundation, Wyoming Wild Sheep Foundation, Wild Sheep Foundation, Wyoming Wildlife/Livestock Disease Research Partnership, the US National Science Foundation [IOS-1656642 and IOS-1656527, the Spanish Ministry of Economy, Industry and Competitiveness, and by a GRUPIN research grant from the Regional Government of Asturias, Sigrid Rausing Trust, Batubay Özkan, Barbara Watkins, NSERC Discovery Grant, the Federal Aid in Wildlife Restoration act under Pittman-Robertson project, the State University of New York, College of Environmental Science and Forestry, the Ministry of Education, Youth and Sport of the Czech Republic, the Ministry of Agriculture of the Czech Republic, Rufford Foundation, an American Society of Mammalogists African Graduate Student Research Fund, the German Science Foundation, the Israeli Science Foundation, the BSF-NSF, the Ministry of Agriculture, Forestry and Food and Slovenian Research Agency (CRP V1-1626), the Aage V. Jensen Naturfond (project: Kronvildt - viden, værdier og værktøjer), the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy, National Centre for Research and Development in Poland, the Slovenian Research Agency, the David Shepherd Wildlife Foundation, Disney Conservation Fund, Whitley Fund for Nature, Acton Family Giving, Zoo Basel, Columbus, Bioparc de Doué-la-Fontaine, Zoo Dresden, Zoo Idaho, Kolmården Zoo, Korkeasaari Zoo, La Passarelle, Zoo New England, Tierpark Berlin, Tulsa Zoo, the Ministry of Environment and Tourism, Government of Mongolia, the Mongolian Academy of Sciences, the Federal Aid in Wildlife Restoration act and the Illinois Department of Natural Resources, the National Science Foundation, Parks Canada, Natural Sciences and Engineering Research Council, Alberta Environment and Parks, Rocky Mountain Elk Foundation, Safari Club International and Alberta Conservation Association, the Consejo Nacional de Ciencias y Tecnología (CONACYT) of Paraguay, the Norwegian Environment Agency and the Swedish Environmental Protection Agency, EU funded Interreg SI-HR 410 Carnivora Dinarica project, Paklenica and Plitvice Lakes National Parks, UK Wolf Conservation Trust, EURONATUR and Bernd Thies Foundation, the Messerli Foundation in Switzerland and WWF Germany, the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie Actions, NASA Ecological Forecasting Program, the Ecotone Telemetry company, the French National Research Agency, LANDTHIRST, grant REPOS awarded by the i-Site MUSE thanks to the “Investissements d’avenir” program, the ANR Mov-It project, the USDA Hatch Act Formula Funding, the Fondation Segre and North American and European Zoos listed at http://www.giantanteater.org/, the Utah Division of Wildlife Resources, the Yellowstone Forever and the National Park Service, Missouri Department of Conservation, Federal Aid in Wildlife Restoration Grant, and State University of New York, various donors to the Botswana Predator Conservation Program, data from collared caribou in the Northwest Territories were made available through funds from the Department of Environment and Natural Resources, Government of the Northwest Territories. The European Research Council Horizon2020, the British Ecological Society, the Paul Jones Family Trust, and the Lord Kelvin Adam Smith fund, the Tanzania Wildlife Research Institute and Tanzania National Parks. The Eastern Shoshone and Northern Arapahoe Fish and Game Department and the Wyoming State Veterinary Laboratory, the Alaska Department of Fish and Game, Kodiak Brown Bear Trust, Rocky Mountain Elk Foundation, Koniag Native Corporation, Old Harbor Native Corporation, Afognak Native Corporation, Ouzinkie Native Corporation, Natives of Kodiak Native Corporation and the State University of New York, College of Environmental Science and Forestry, and the Slovenia Hunters Association and Slovenia Forest Service. F.C. was partly supported by the Resident Visiting Researcher Fellowship, IMéRA/Aix-Marseille Université, Marseille. This work was partially funded by the Center of Advanced Systems Understanding (CASUS), which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science, Culture and Tourism (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament. This article is a contribution of the COVID-19 Bio-Logging Initiative, which is funded in part by the Gordon and Betty Moore Foundation (GBMF9881) and the National Geographic Society.https://www.science.org/journal/sciencehj2023Mammal Research InstituteZoology and Entomolog

    Evaluating the protection of wildlife in parks: the case of African buffalo in Serengeti

    Get PDF
    Human population growth rates on the borders of protected areas in Africa are nearly double the average rural growth, suggesting that protected areas attract human settlement. Increasing human populations could be a threat to biodiversity through increases in illegal hunting. In the Serengeti ecosystem, Tanzania, there have been marked declines in black rhino (Diceros bicornis), elephant (Loxodonta africana) and African buffalo (Syncerus caffer) inside the protected area during a period when there was a reduction of protection through anti-poaching effort (1976–1996). Subsequently, protection effort has increased and has remained stable. During both periods there were major differences in population decline and recovery in different areas. The purpose of this paper is to analyse the possible causes of the spatial differences. We used a spatially structured population model to analyze the impacts of three factors—(i) hunting, (ii) food shortage and (iii) natural predation. Population changes were best explained by illegal hunting but model fit improved with the addition of predation mortality and the effect of food supply in areas where hunting was least. We used a GIS analysis to determine variation in human settlement rates and related those rates to intrinsic population changes in buffalo. Buffalo populations in close proximity to areas with higher rates of human settlement had low or negative rates of increase and were slowest to recover or failed to recover at all. The increase in human populations along the western boundary of the Serengeti ecosystem has led to negative consequences for wildlife populations, pointing to the need for enforcement of wildlife laws to mitigate these effects

    Stem growth of woody species at the Nkuhlu exclosures, Kruger National Park: 2006–2010

    No full text
    An important aspect of managing African conservation areas involves understanding how large herbivores affect woody plant growth. Yet, data on growth rates of woody species in savannas are scarce, despite its critical importance for developing models to guide ecosystem management. What effect do browsing and season have on woody stem growth? Assuming no growth happens in the dry season, browsing should reduce stem growth in the wet season only. Secondly, do functional species groups differ in stem growth? For example, assuming fine-leaved, spiny species’ growth is not compromised by carbon-based chemical defences, they should grow faster than broad-leaved, chemically defended species. Dendrometers were fixed at 20 cm in height on the main stems of 244 random plants of six woody species in three plots (all large herbivores excluded, partial exclusion, and control) and observed from late 2006 to early 2010. Average monthly increment (AMI) per dendrometer and season (dry, wet) was calculated and the interaction between plot and season tested per species, controlling for initial stem girth. AMIs of Combretum apiculatum, Dichrostachys cinerea and Grewia flavescens were zero in the dry season, whilst those of Acacia exuvialis, Acacia grandicornuta and Euclea divinorum were either positive or negative in the dry season. Wet-season AMI of D. cinerea and dry-season AMI of G. flavescens tended to be reduced by browser exclusion. Net AMI (sum of the seasonal AMIs) was tested per species, but results suggested that only D. cinerea tended to be affected by browser exclusion. The results also suggested that stem radial growth of some fast-growing species is more prone to reduction by browser exclusion than the growth of other species, potentially reducing their competitiveness and increasing their risk of extirpation. Finally, the usefulness of grouping woody species into simple functional groups (e.g. fine-leaved vs. broad-leaved) for ecosystem management purposes in savannas requires further consideration. Conservation implications: Growth rates of woody plants are important parameters in savanna models, but data are scarce. Monitoring dendrometers in manipulative situations over several years can help fill that gap. Results of such studies can be used to identify species prone to high risk of extirpation
    corecore