279 research outputs found

    Climate Influences the Demography of Three Dominant Sagebrush Steppe Plants

    Get PDF
    Climate change could alter the population growth of dominant species, leading to profound effects on community structure and ecosystem dynamics. Understanding the links between historical variation in climate and population vital rates (survival, growth, recruitment) is one way to predict the impact of future climate change. Using a unique, long-term dataset from eastern Idaho, we parameterized Integral Projection Models for Pseudoroegneria spicata, Hesperostipa comata, and Artemisia tripartita to identify the demographic rates and climate variables most important for population growth. We described survival, growth and recruitment as a function of genet size using mixed effect regression models that incorporated climate variables. Elasticites for the survival+growth portion of the kernel were larger than the recruitment portion for all three species with survival+growth accounting for 87%-95% of the total elasticity. The genet sizes with the highest elasticity values in each species were very close to the genet size threshold where survival approached 100%. We found strong effects of climate on the population growth rate of two of our three species. In H. comata, a 1% decrease in previous year\u27s precipitation would lead to a 0.6% decrease in population growth. In A. tripartita, a 1% increase in summer temperature would result in a 1.3% increase in population growth. In both H. comata and A. tripartita, climate influenced population growth by affecting genet growth more than survival or recruitment. Late winter snow was the most important climate variable for P. spicata, but its effect on population growth was smaller than the climate effects we found in H. comata or A. tripartita. For all three species, demographic responses lagged climate by at least one year. Our analysis indicates that understanding climate effects on genet growth may be crucial for anticipating future changes in the structure and function of sagebrush steppe vegetation

    A hierarchical Bayesian approach for handling missing classification data

    Get PDF
    Ecologists use classifications of individuals in categories to understand composition of populations and communities. These categories might be defined by demo- graphics, functional traits, or species. Assignment of categories is often imperfect, but frequently treated as observations without error. When individuals are observed but not classified, these “partial” observations must be modified to include the missing data mechanism to avoid spurious inference. We developed two hierarchical Bayesian models to overcome the assumption of perfect assignment to mutually exclusive categories in the multinomial distribu- tion of categorical counts, when classifications are missing. These models incorporate auxiliary information to adjust the posterior distributions of the proportions of membership in categories. In one model, we use an empirical Bayes approach, where a subset of data from one year serves as a prior for the missing data the next. In the other approach, we use a small random sample of data within a year to inform the distribution of the missing data. We performed a simulation to show the bias that occurs when partial observations were ignored and demonstrated the altered inference for the estimation of demographic ratios. We applied our models to demographic classifications of elk (Cervus elaphus nelsoni) to demonstrate improved inference for the proportions of sex and stage classes. We developed multiple modeling approaches using a generalizable nested multi- nomial structure to account for partially observed data that were missing not at random for classification counts. Accounting for classification uncertainty is important to accurately understand the composition of populations and communities in ecological studies

    Interchangeable punishments during aversive conditioning in Drosophila

    Get PDF
    Using Drosophila melanogaster larvae we asked whether distinct aversive stimuli have a common neuralrepresentation during associative learning. We tested the interchangeability of heat shock and electroshock punishments when used within a single olfactory associative conditioning experiment. We find that compared to animals trained with the repetitive use of a single punishment, the use of two alternating punishments results in similar associative learning. Additionally, the two punishments are shown to have different sensory origins. Therefore, while punishments are processed differently by the larvae of Drosophila melanogaster, the value of the stimulus is preserved

    DNA Methylation Analysis Reveals Distinct Methylation Signatures in Pediatric Germ Cell Tumors

    Get PDF
    Background: Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during normal development. Methods: We used the Illumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N = 51) and used recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and demographic characteristics. We identified genes and pathways that were differentially methylated using generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1 elements and evaluated methylation at selected imprinted loci using pyrosequencing. Results: Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class. Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas (q \u3c 0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma showed significantly lower methylation at LINE1 elements compared with normal adjacent tissue while there was no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci differed significantly by tumor histology and location. Conclusion: Understanding methylation patterns may identify the developmental stage at which the GCT arose and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant genetic pathways could lead to the development of new targets for therapy

    Low-Level ionizing radiation induces selective killing of HIV-1-infected cells with reversal of cytokine induction using mtor inhibitors

    Get PDF
    HIV-1 infects 39.5 million people worldwide, and cART is effective in preventing viral spread by reducing HIV-1 plasma viral loads to undetectable levels. However, viral reservoirs persist by mechanisms, including the inhibition of autophagy by HIV-1 proteins (i.e., Nef and Tat). HIV-1 reservoirs can be targeted by the “shock and kill” strategy, which utilizes latency-reversing agents (LRAs) to activate latent proviruses and immunotarget the virus-producing cells. Yet, limitations include reduced LRA permeability across anatomical barriers and immune hyper-activation. Ionizing radiation (IR) induces effective viral activation across anatomical barriers. Like other LRAs, IR may cause inflammation and modulate the secretion of extracellular vesicles (EVs). We and others have shown that cells may secrete cytokines and viral proteins in EVs and, therefore, LRAs may contribute to inflammatory EVs. In the present study, we mitigated the effects of IR-induced inflammatory EVs (i.e., TNF-α), through the use of mTOR inhibitors (mTORi; Rapamycin and INK128). Further, mTORi were found to enhance the selective killing of HIV-1-infected myeloid and T-cell reservoirs at the exclusion of uninfected cells, potentially via inhibition of viral transcription/translation and induction of autophagy. Collectively, the proposed regimen using cART, IR, and mTORi presents a novel approach allowing for the targeting of viral reservoirs, prevention of immune hyper-activation, and selectively killing latently infected HIV-1 cells

    Radiofrequency Treatment of Facet-related Pain: Evidence and Controversies

    Get PDF
    Pain originating from the lumbar facet joints is estimated to represent about 15% of all low back pain complaints. The diagnostic block is considered to be a valuable tool for confirming facetogenic pain. It was demonstrated that a block of the ramus medialis of the ramus dorsalis is preferred over an intra-articular injection. The outcome of the consequent radiofrequency treatment is not different in patients reporting over 80% pain relief after the diagnostic block than in those who have between 50% and 79% pain relief. There is one well-conducted comparative trial assessing the value of one or two controlled diagnostic blocks to none. The results of the seven randomized trials on the use of radiofrequency treatment of facet joint pain demonstrate that good patient selection is imperative for good clinical outcome. Therefore, we suggest one block of the ramus medialis of the ramus dorsalis before radiofrequency treatment

    Complications and pitfalls of lumbar interlaminar and transforaminal epidural injections

    Get PDF
    Lumbar interlaminar and transforaminal epidural injections are used in the treatment of lumbar radicular pain and other lumbar spinal pain syndromes. Complications from these procedures arise from needle placement and the administration of medication. Potential risks include infection, hematoma, intravascular injection of medication, direct nerve trauma, subdural injection of medication, air embolism, disc entry, urinary retention, radiation exposure, and hypersensitivity reactions. The objective of this article is to review the complications of lumbar interlaminar and transforaminal epidural injections and discuss the potential pitfalls related to these procedures. We performed a comprehensive literature review through a Medline search for relevant case reports, clinical trials, and review articles. Complications from lumbar epidural injections are extremely rare. Most if not all complications can be avoided by careful technique with accurate needle placement, sterile precautions, and a thorough understanding of the relevant anatomy and contrast patterns on fluoroscopic imaging

    MiRNA Profile Associated with Replicative Senescence, Extended Cell Culture, and Ectopic Telomerase Expression in Human Foreskin Fibroblasts

    Get PDF
    Senescence is a highly regulated process that limits cellular replication by enforcing a G1 arrest in response to various stimuli. Replicative senescence occurs in response to telomeric DNA erosion, and telomerase expression can offset replicative senescence leading to immortalization of many human cells. Limited data exists regarding changes of microRNA (miRNA) expression during senescence in human cells and no reports correlate telomerase expression with regulation of senescence-related miRNAs. We used miRNA microarrays to provide a detailed account of miRNA profiles for early passage and senescent human foreskin (BJ) fibroblasts as well as early and late passage immortalized fibroblasts (BJ-hTERT) that stably express the human telomerase reverse transcriptase subunit hTERT. Selected miRNAs that were differentially expressed in senescence were assayed for expression in quiescent cells to identify miRNAs that are specifically associated with senescence-associated growth arrest. From this group of senescence-associated miRNAs, we confirmed the ability of miR-143 to induce growth arrest after ectopic expression in young fibroblasts. Remarkably, miR-143 failed to induce growth arrest in BJ-hTERT cells. Importantly, the comparison of late passage immortalized fibroblasts to senescent wild type fibroblasts reveals that miR-146a, a miRNA with a validated role in regulating the senescence associated secretory pathway, is also regulated during extended cell culture independently of senescence. The discovery that miRNA expression is impacted by expression of ectopic hTERT as well as extended passaging in immortalized fibroblasts contributes to a comprehensive understanding of the connections between telomerase expression, senescence and processes of cellular aging
    corecore