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DNA methylation analysis reveals distinct
methylation signatures in pediatric germ cell
tumors

James F Amatruda'?*", Julie A Ross”®, Brock Christensen® Nicholas J Fustino', Kenneth S Chen'?,
Anthony J Hooten®, Heather Nelson®’, Jacquelyn K Kuriger®’, Dinesh Rakheja®, A Lindsay Frazier’
and Jenny N Poynter*®

Abstract

Background: Aberrant DNA methylation is a prominent feature of many cancers, and may be especially relevant in
germ cell tumors (GCTs) due to the extensive epigenetic reprogramming that occurs in the germ line during
normal development.

Methods: We used the lllumina GoldenGate Cancer Methylation Panel to compare DNA methylation in the three
main histologic subtypes of pediatric GCTs (germinoma, teratoma and yolk sac tumor (YST); N=51) and used
recursively partitioned mixture models (RPMM) to test associations between methylation pattern and tumor and
demographic characteristics. We identified genes and pathways that were differentially methylated using
generalized linear models and Ingenuity Pathway Analysis. We also measured global DNA methylation at LINE1
elements and evaluated methylation at selected imprinted loci using pyrosequencing.

Results: Methylation patterns differed by tumor histology, with 18/19 YSTs forming a distinct methylation class.
Four pathways showed significant enrichment for YSTs, including a human embryonic stem cell pluripotency
pathway. We identified 190 CpG loci with significant methylation differences in mature and immature teratomas
(9 <0.05), including a number of CpGs in stem cell and pluripotency-related pathways. Both YST and germinoma
showed significantly lower methylation at LINET elements compared with normal adjacent tissue while there was

differed significantly by tumor histology and location.

no difference between teratoma (mature and immature) and normal tissue. DNA methylation at imprinted loci

Conclusion: Understanding methylation patterns may identify the developmental stage at which the GCT arose
and the at-risk period when environmental exposures could be most harmful. Further, identification of relevant
genetic pathways could lead to the development of new targets for therapy.

Keywords: Germ Cell Tumor, Teratoma, DNA Methylation, Imprinting

Background

Aberrant DNA methylation has been implicated in the
etiology of multiple types of cancer, and has the poten-
tial to be especially relevant in germ cell tumors (GCTs)
due to extensive epigenetic reprogramming that occurs
in the germ line and early embryo during normal
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development. Histologically, GCTs can be divided into
germinomas and non-germinomas. Germinomas (GERs;
also called seminomas in the testis and dysgerminomas
in the ovary) are tumors of undifferentiated germ
cells that retain markers of pluripotency. In contrast,
non-germinomas undergo differentiation to resemble
somatic-type tissues (teratomas) or extra-embryonic
structures (yolk sac tumor (YST) and choriocarcinoma).
Studies of testicular GCTs have suggested that global
methylation patterns differentiate the main histologic
subtypes, with seminomas exhibiting global DNA
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Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
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hypomethylation while nonseminomas exhibit higher
levels of methylation [1-3]. Initially, these data supported
a theory that the methylation status indicated the em-
bryonic stage of development of the primordial germ cell
(PGC) when the tumor arose, with seminomas arising
from a hypomethylated PGC and nonseminomas origin-
ating following de novo methylation of PGCs [1].
However, the hypomethylation observed in IGCNU
(Intratubular Germ Cell Neoplasia, Unspecified), which
is believed to be the precursor of both seminomas and
non-seminomas, would suggest that both seminomas
and nonseminomas are derived from a hypomethylated
PGC [2]. Importantly, these alterations in methylation
may be clinically relevant as DNA methylation has been
shown to predict response to cisplatin treatment in an
adult testicular cancer cell line [4].

Few studies have evaluated DNA methylation in
pediatric GCTs [5-9]. Of these, three have identified
hypermethylation in the promoter of tumor suppressor
genes [6-8] while two others have identified unique
methylation patterns that can help distinguish between
tumors of different histologic subtypes [5,9]. In addition,
alterations in genomic imprinting, which is controlled by
DNA methylation, have been identified in GCTs [10-12].

In adolescents, as in adults, GCTs can present as
germinomas, non-germinomas or a mixture of the two
types. Young children less than 5 years of age, in con-
trast, develop primarily yolk sac tumors and teratomas.
While yolk sac tumors are malignant at any age, the sig-
nificance and clinical management of teratomas remain
controversial. Mature teratomas contain fully differenti-
ated tissues, and when occurring in the testis of pre-
pubertal males or in the ovary are benign tumors [13].
In contrast, immature teratomas are characterized histo-
logically by the presence of immature tissues, especially
neural tissue. Higher-grade immature teratomas (those
containing a higher percentage of immature elements)
are often considered malignant and treated with cyto-
toxic chemotherapy [14]. While studies have identified
clinical [15] and radiographic [16,17] features that separate
mature from immature teratomas, the molecular signature
of immature teratomas is not well understood. To date,
methylation patterns have not been compared in mature
and immature teratomas in the pediatric age group.

Given the important role of epigenetic reprogramming
in normal germ cell development, additional studies of
DNA methylation are likely to increase our understan-
ding of the etiology of pediatric GCTs. In this analysis,
we evaluated differences in DNA methylation in cancer-
related and imprinted genes by tumor and patient char-
acteristics in a series of 51 pediatric GCTs, including
YSTs, germinomas and teratomas (mature and imma-
ture). In addition, we evaluated global hypomethylation
at LINE1 elements in a subset of the samples.
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Methods

Study samples

GCTs from pediatric and adolescent patients (ages
0-21 years) were obtained from the Cooperative Human
Tissue Network (Columbus, OH) and from Children’s
Medical Center Dallas (CMC). Tumors were resected at
initial diagnosis and snap frozen at —-70°C. Pathology re-
ports were also provided. Data were available for tumor
histology, tumor location (gonadal or extragonadal), sex,
and age at diagnosis. Normal adjacent tissue was also
available for five of the tumors (four ovarian and one
testicular) in our case series. Diagnosis was verified by a
pediatric pathologist prior to molecular analysis and only
samples with >70% tumor cellularity of pure histological
subtypes were included.

This analysis used existing data with no personal iden-
tifiers; therefore, the study was deemed exempt from re-
view by the Institutional Review Boards of the University
of Minnesota and the University of Texas Southwestern
Medical Center and CMC.

DNA extraction and bisulfite conversion

Genomic DNA was isolated from GCT tissue and paired
normal adjacent tissue (when available) using either the
TRIzol® extraction method (Invitrogen Life Technologies,
California) or a QIAamp DNA Mini Kit (Qiagen Sciences,
Maryland) according to the manufacturer’s recommended
protocol. DNA vyield was quantified using 1 pl DNA on
a NanoDrop™ spectrophotometer (Thermo Scientific,
Maryland). Extracted DNA was stored at -80°C until
further analysis.

Prior to methylation analysis, 1 pg genomic DNA was
treated with sodium bisulfite to convert unmethylated
cytosines to uracil using the EZ DNA Methylation Kit
(Zymo Research, Orange, CA) according to manufac-
turer’s protocol.

GoldenGate cancer methylation panel

DNA methylation at 1505 CpG loci in 807 cancer-
related genes was evaluated using the GoldenGate
Cancer Methylation Panel I (Illumina, Inc.) in the Bio-
medical Genomics Center at the University of Minnesota
following the manufacturer’s protocol as described [18].
Replicates were included, including four duplicates that
were included on both arrays and five duplicates that
were included within one array.

Pyrosequencing

Array methylation results were validated by Pyrosequen-
cing using a PyroMark MD80 Pyrosequencer (Qiagen)
in a subset of the samples (N =41 samples from CHTN).
Five pyrosequencing assays were designed for regions
targeting the CpG loci on the array that had significant
methylation differences between yolk sac tumor and
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other histologic subtypes. Briefly, PCR primers and
sequencing primers were designed using PSQ Assay
Design software (Qiagen, Inc) to capture the array CpG
and as many neighboring CpGs as possible. Methylation
at imprinted loci was evaluated using assays described in
Woodfine et al. [19]. Primers and conditions are avail-
able upon request. Global LINE1 methylation was mea-
sured by pyrosequencing 4 CpG loci in the LINEI1
region as previously described [20]. LINE1 was mea-
sured in triplicate for each sample.

Commercially available Epitect methylated and unme-
thylated DNA standards were used as controls (Qiagen).
In addition, a sequencing primer control and a no tem-
plate control were included for each assay. The level of
methylation for each CpG within the target region of ana-
lysis was quantified using the Pyro Q-CpG Software.

Preparation of total RNA

Total RNA was prepared from fresh frozen tumor tissue.
30-50 mg of tissue was homogenized using Tissue Miser
(Fisher Scientific, Pittsburgh, PA) in TRIzol® Reagent
(Invitrogen, Carlsbad, CA); approximately 1 mL TRIzol"
per 50 mg of tissue was used. After incubation for 30 -
minutes at room temperature, phase separation was
done using chloroform (200 pL/1 mL Trizol®). Sample
was shaken vigorously, centrifuged at 13000 rpm at 4°C,
and aqueous phase removed. RNA precipitation was
done using 70% ethanol. To remove contaminant gen-
omic DNA, on-column DNase digestion was done using
RNase-Free DNase Digestion Kit (Qiagen, Valencia, CA).
RNA isolation was done per manufacturer’s instructions
using RNeasy® Mini Kit (Qiagen, Valencia, CA) and final
elution performed in 20 pL H,O. Quantity and purity
was assessed using NanoDrop™ 1000 spectrophotometer
(Thermo Fisher Scientific, Wilmington, DE). Absorbance
ratios at 260/280 nm and 260/230 nm were used to ver-
ify purity. Quality was further assessed by visualization
of 28S and 18S bands after performing gel electrophor-
esis (1% agarose in 1X Tris-EDTA-Acetate Buffer).

Quantitative RT-PCR

c¢DNAs were synthesized from 1 pg of purified RNA using
RT? First Strand Kit (SABiosciences, Frederick, MD).
Real-time quantitative PCR gene expression profiling
was performed using a Wnt pathway-specific array
(SABiosciences, Frederick, MD). Arrays profiled 84
pathway-specific genes with validated primers and
contained internal control primers to assess genomic
DNA contamination, RNA quality, and PCR amplification
efficacy. RT-qPCR was performed on Applied Biosystems
7500 Real-Time PCR System (Carlsbad, CA) using RT>
SYBR® Green qPCR Master Mix (SABiosciences, Fred-
erick, MD) as a fluorophore for amplicon detection. PCR
conditions were as follows: 95°C x 10 minutes, 95°C for
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15 seconds then 60°C for 1 minute x 40 cycles, followed
by a dissociation stage per manufacturer’s protocol. Gene
expression was normalized to endogenous HPRT, B-actin
(ACTB) and glyceraldehyde-3-phosphate dehydrogenase
(GAPDH), as these internal reference genes exhibited the
least variation among the five internal reference genes
evaluated. Fold change of gene expression was determined
using the 2042Y method, and compared yolk sac tumors
(n=4) to germinomas (n=3). We performed unsuper-
vised hierarchical cluster analysis using web-based PCR
data analysis software (www.sabiosciences.com/pcrarray
dataanalysis.php). Raw gene expression data and calcula-
tions are shown in Additional file 1: Tables S2-S8, . Gene
expression among histologic subtypes was compared using
a type 3 t-test (Additional file 1: Table S7).

Real time quantitative RT-PCR for SOX2 and
DNMT3B (N =34 samples) was measured using a hu-
man embryonic stem cell PCR array (SA Biosciences).
Fold change of gene expression was determined using
the 2024“Y method, and differences by tumor histology
were measured using generalized linear models.

Statistical analysis

To understand differences in methylation patterns by
tumor histology, we evaluated the three main histologic
subtypes as determined by pathology review (YSTs,
dysgerminomas, and teratomas) using the analytic tech-
niques described below.

GoldenGate methylation data

Using the GoldenGate array, the methylation status of a
CpG site is calculated as the variable 3, which is the ra-
tio of the fluorescent signal from the methylated allele to
the sum of the fluorescent signals of both methylated
and unmethylated alleles [18]. These values range from
0 (unmethylated) to 1 (fully methylated). GenomeStudio
software (Illumina, Inc) was used to calculate the aver-
age methylation values () from the ~30 replicate methy-
lation measurements for each CpG locus. We used raw
average [ values without normalization. GenomeStudio
software was also used to assess data quality for each
CpG loci. We omitted all CpG loci where >25% of the
samples had a detection p-value>0.05 (N=16, 1%).
X-linked CpG loci (N = 84) were also removed, resulting
in 1,405 loci for analysis.

The remaining analyses for the array data were
conducted in R [21]. Methylation differences were evalu-
ated using unsupervised hierarchical clustering with the
Manhattan metric and average linkage as previously de-
scribed [22]. We used recursively partitioned mixture
modeling (RPMM) to test associations between methyla-
tion status and tumor (histology and location) and
demographic (age at diagnosis and sex) characteristics as
described [23] and implemented [22,24]. Briefly, samples


http://www.sabiosciences.com/pcrarraydataanalysis.php
http://www.sabiosciences.com/pcrarraydataanalysis.php

Amatruda et al. BMC Cancer 2013, 13:313
http://www.biomedcentral.com/1471-2407/13/313

are assigned to a methylation class using a model-based
form of unsupervised clustering. Permutation-based
tests (with 10,000 permutations) were used to test for
associations between methylation class and covariates:
we used a chi-squared test for categorical covariates
(tumor histology, tumor location, and sex), and a
Kruskal-Wallis test statistic to test associations between
methylation class and age.

We then used a series of generalized linear models
(GLM) to identify genes that were differentially methyl-
ated in YSTs and teratomas as previously described [22].
We accounted for multiple testing by controlling the
false-discovery rate (FDR) [25]. Q-values were computed
using the g-value package in R.

Ingenuity Pathway Analysis (IPA; Ingenuity Systems)
was used to identify pathways that were enriched in
the list of CpG loci with significantly different methy-
lation in YSTs compared with other histologic sub-
types of tumors and in immature teratomas compared
with mature teratomas. We implemented an IPA Core
analysis with HUGO gene symbol as the identifier.
For the analysis of YSTs, we restricted the analysis to
CpG loci with up-regulated methylation (effect size >
1.0). For the comparison of mature and immature
teratomas, we restricted the analysis to CpG loci with
down-regulated methylation in immature teratomas.
Both analyses included only CpG loci that were sig-
nificant after controlling for multiple comparisons
(g-value < 0.05)

Pyrosequencing data

Analysis of pyrosequencing data was conducted using SAS
v. 9.2 (SAS Institute, Cary, NC). For the array validation
assays, Pearson correlation coefficients and p-values are
reported for correlation between Pyrosequencing and
GoldenGate data.

For the imprinted loci, we would expect methylation to
be ~50%. We categorized samples into three groups: 1)
<33% methylation (hypomethylated), 2) 33-66% methyla-
tion (median methylation), and 3) >66% methylation
(hypermethylation) as previously described [11,26]. A
Fisher’s exact test was used to evaluate statistical signifi-
cance of any differences in methylation by tumor histology
and location.

Global LINE1 measure was evaluated by calculating
the mean methylation level across the 4 LINE1 CpG
loci. The mean was then averaged across the three
replicates for each sample. Differences in LINE1
methylation across tumor histology (YST, germinoma,
mature teratoma, immature teratoma, normal adja—
cent), tumor location, sex and age group were evalu-
ated using a GLM with LINE1l methylation as the
outcome variable.
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Results

Characteristics of the study samples

Tumor specimens from 51 cases of pediatric GCT ran-
ging in age from O — 21 years were included in this ana-
lysis, including 19 yolk sac tumors (YSTs), 22 teratomas
(8 immature and 14 mature), and 10 germinomas
(Table 1). The YSTs were evenly distributed among boys
and girls while the majority of cases with a germinoma
or teratoma were female. Information on race/ethnicity
was not available for the cases. Normal adjacent DNA
was available for five cases (four ovary and 1 testis). Cor-
relation coefficients for replicates were >0.95 for all
samples. There were no significant differences in methy-
lation values when we compared samples extracted by
the Trizol method with samples extracted by QIAamp
after adjustment for tumor histology (p > 0.05).

Methylation differences by tumor histology

Unsupervised clustering of methylation data revealed
differences by tumor histology (Figure 1). Modeling the
methylation data with RPMM resulted in 8 methylation
classes (Figure 2). Methylation classes were significantly
associated with tumor histology (p <0.0001): class 8
included 18/19 YSTs and classes 4—6 included all
germinomas (Figure 1). Eight of the mature teratomas
comprised their own methylation class (Class 3) while
the remaining six were classified with either immature
teratomas or dysgerminomas. Methylation class was also
significantly associated with tumor location (p =0.005),
sex (p = 0.008) and age at diagnosis (p < 0.001).

In comparisons of YSTs with the other histologic
types, we identified 703 CpG sites with statistically sig-
nificant differences in methylation (q-value < 0.05). Of
the 233 CpGs most significantly associated with YST
histology (q-value < 2.2E-16), the majority (96%) had in-
creased methylation. Twenty-three CpG loci with the
most significant q values also had an adjusted fold
change in B = 2.75, indicating that YSTs had methylation
levels = 2.75 times higher than tumors of other histologic
types at these loci (Table 2).

We selected 5 CpG loci with significant methylation dif-
ferences by tumor histology (q-value < 2.2E-16 and fold-
change > 2.50) for validation by Pyrosequencing (HOXA
9 E252 R, SOXI1_P294 F WTI_E32_ F WNT2_P217_F,
MDRI_seq_42_S300_R). Array methylation was signifi-
cantly correlated with Pyrosequencing methylation for all
CpG loci (HOXA9: r=0.92, p<0.0001; SOX1: r=0.92,
p<0.0001; WTI1: r=0.93, p<0.0001; WNT2: r=097,
p <0.0001; MDRI: r = 0.97, p < 0.0001).

Using an Ingenuity Core Pathway Analysis, the human
embryonic stem cell pluripotency (p =0.02), embryonic
stem cell differentiation into cardiac lineages (p = 0.04),
serotonin receptor signaling (p=0.04), and role of
Wnt/GSK-3p signaling in the pathogenesis of influenza
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Table 1 Selected characteristics of the study samples

Yolk Sac Tumor Immature Teratoma Mature Teratoma Germinoma

N (%) N (%) N (%) N (%)

Total 19 8 14 10
Age
Median (range) 10 -19) 50-21) 45 (0 -15) 12(7-17)
Sex
Male 10 (53) 1(87) 4 (29) 0
Female 9 (47) 7(012) 10 (71) 10 (100)
Tumor location
Ovary 4(21) 4 (50) 6 (43) 10 (100)
Testis 6 (32) 1012 0 0
Extragonadal 9 (47) 3 (37) 8 (57) 0

(p=0.05) pathways were enriched in CpG loci that
had significantly higher methylation in YSTs compared
with the other histologic types (gq-value<0.05, fold
change > 1.0). Of these, the human embryonic stem cell
pathway contains a number of genes that are highly rele-
vant in germ cell biology (TCF4, WNT10B, BDNF, FGF2,
BMP3, FZD9, WNT2, APC, SOX2, NTRK2, NTRKS,
TGFB3, TGFB2, WNT1, PDGFRB). All of these genes had
increased methylation in YST compared to other histologic

subtypes, with 9/15 genes showing a greater than 2-fold
increase (data not shown).

To determine if differential methylation of Wnt path-
way genes affected the expression of the Wnt pathway in
pediatric GCTs, we prepared RNA from fresh-frozen
specimens of 7 of the tumors and performed quantita-
tive RT-PCR of selected Wnt pathway genes (15 genes
representing 25 methylated loci). Despite the fact that
YSTs in general showed higher levels of methylation, of

|

TN

Methylated

Unmethylated

I

Figure 1 Unsupervised hierarchical clustering of CpG methylation

bars represent histologic subtype of the tumor. Light purple represents

« —

Teratoma-|lll Teratoma-Ml Dysgerminoma

clustering based on Manhattan distance and average linkage of the 1404 autosomal CpG loci that passed initial quality control checks. Colored

represents germinoma and red represents yolk sac tumor. Samples are in columns (N=51) and CpG loci are in rows. Blue indicates high level of
methylation (51-100%), black equals 50% methylation, and yellow indicates low level of methylation (0-49%).

ysTH
in GCTs by tumor histology. Heat map from unsupervised hierarchical

mature teratoma, dark purple represents immature teratoma, orange
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B N=5 N=3 N=8 N=4 'N=3 N=5 | N=5 N=18
Histology
YST 0 0 0 0 0 0 1 18
Germinoma 0 0 0 4 1 5 0 0
Teratoma — | 3 2 0 0 0 0 3 0
Teratoma — M 2 1 8 0 2 0 1 0
Age Group
0-9 0 3 6 1 1 0 3 15
10-21 5 0 2 2 5 2 3
Tumor Location
Ovary 5 0 3 4 1 5 2 4
Testis 0 1 0 0 0 0 0 6
Extragonadal 0 2 5 0 2 0 S 8
Sex
Male 0 2 3 0 0 0 0 10
Female 5 1 5 4 3 5 5 8
Figure 2 Recursively partitioned mixture model (RPMM) of CpG methylation in GCTs. A. Columns represent methylation class generated
by RPMM and rows represent the average methylation within the class at each CpG site. Blue represents methylated and yellow represents
unmethylated. The width of the row is proportional to the number of samples included in the methylation class. B. Characteristics of the tumors
in each methylation class.

the 15 genes assessed 8 showed both lower levels of
methylation and higher expression in YSTs compared to
GER (Figure 3A; Additional file 1: Table S1). To further
understand the transcriptional landscape of Wnt path-
way activation in GCTs, we profiled a total of 84 genes
comprising ligands, receptors, effectors and transcrip-
tional targets in the Wnt pathway. Unsupervised cluste-
ring based on differential gene expression segregated
YSTs and GERs and indicated higher levels of Wnt path-
way gene expression in YSTs (Figure 3B; Additonal
file 1: Tables S2-S8, Thus the Wnt pathway is active in
YSTs and this activity may be explained at least in part
by differential methylation.

Comparison of methylation in normal and tumor samples
Paired normal adjacent tissue was also available for five
tumors (2 dysgerminomas, 2 YSTs, and 1 teratoma).
While the small sample size limits our ability to perform
robust statistical analyses, the correlation coefficient for
methylation p values was higher for paired normal/
germinoma samples (0.87 and 0.92) and normal/tera-
toma (0.98) than for paired normal/YST (0.57 and 0.62).

Using a change in B (AB) > 0.20 to designate a significant
difference in methylation between normal and tumor, we
found that 425 and 428 CpG loci were differentially
methylated in the paired YST samples while 239 and 160
were differentially methylated in the paired dysgermino-
ma samples and only 15 were differentially methylated
in the paired teratoma sample. The AP for the paired
YST samples was large for the 23 genes that had the lar-
gest fold change in the comparison by tumor histology
(AP for paired samples shown in Table 2), suggesting
that methylation at these CpG loci also distinguishes
YST from normal testis or ovarian tissue.

Comparison of mature and immature teratomas

The molecular differences between mature and imma-
ture pediatric teratomas have not been explored. When
we used RPMM to evaluate methylation differences only
among the teratomas, tumor histology was not signifi-
cantly associated with methylation class (p=0.11). We
also did not see significant differences by sex (p = 0.10),
tumor location (p=0.13) or age (p=0.28). When we
evaluated the individual CpG loci, we identified 190



Amatruda et al. BMC Cancer 2013, 13:313
http://www.biomedcentral.com/1471-2407/13/313

Table 2 Top 23 genes with differential methylation in YST
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CpG Locus Effect size® g-value A beta YST1® A beta YST2°
HLA.F_E402_F 3.69 <2.2E-16 0.86 0.81
WT1_E32_F 341 <2.2E-16 0.86 0.83
RASSF1_E116_F 3.16 <2.2E-16 0.87 0.79
CYP1B1_E83_R 3.13 <2.2E-16 0.74 0.54
CCNAT1_E7_F 3.13 <2.2E-16 0.67 0.78
SLC22A3_E122_R 3.12 <2.2E-16 0.82 0.74
SCGB3A1_E55_R 3.05 <2.2E-16 0.80 0.77
HOXA9_E252_R 299 <2.2E-16 0.78 0.76
TFAP2C_E260_F 2.98 <2.2E-16 0.81 0.71
FGF3_P171_R 2.96 <2.2E-16 0.78 0.75
PDGFRB_P343_F 2.95 <2.2E-16 0.67 0.55
NPY_P295_F 292 <2.2E-16 081 0.75
ASCL2_P360_F 2.90 <2.2E-16 0.82 0.70
LRRC32_P865_R 2.90 <2.2E-16 0.81 044
CDK10_E74_F 2.88 <2.2E-16 0.83 0.65
HFE_E273_R 287 <2.2E-16 0.80 0.75
SOX1_P294_F 2.86 <2.2E-16 0.79 0.70
TAL1_P594_F 2.83 <2.2E-16 0.78 0.73
RASGRF1_E16_F 2.80 <2.2E-16 0.64 0.73
WT1_P853_F 2.79 <2.2E-16 0.78 0.73
HLF_E192_F 277 <2.2E-16 0.80 0.75
GUCY2D_E419_R 275 <2.2E-16 0.83 0.06
HS3ST2_E145_R 2.75 <2.2E-16 0.84 0.79

2 Indicates the adjusted fold change in the B value in the YST compared with the other histologic subtypes of GCT.
P Indicates the change in the B value in the tumor sample compared to the paired normal adjacent in the two YST with available normal tissue.
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CpG loci with significant methylation differences after
correction for multiple testing. Of these, the majority
(96%) had lower methylation in immature teratomas
compared with mature teratomas. Using an Ingenuity
Core Pathway Analysis, we identified 13 overlapping
pathways enriched in CpG loci that had significantly re-
duced methylation in immature teratomas compared
with mature teratomas (Table 3), including a number of
pathways related to stem cell biology.

Notably, SOX2 was included in four of the pathways
that differed between mature and immature teratomas.
We were able to evaluate SOX2 by quantitative RT-PCR
in 34 of the samples included in our analysis (N =17
teratomas). Overall, we found that methylation at SOX2
was negatively correlated with expression (r=-0.40,
p =0.06). We also found that SOX2 expression varied by
histologic subtype, with YST and germinoma having
lower levels of expression than either group of terato-
mas, although this difference did not reach statistical
significance (p =0.18, Additonal file 1: Table S9). We
also evaluated expression of DNMT3B, a known regula-
tor of de novo methylation. We observed significantly
higher levels of DNMT3B expression in YST compared
with all other histologic subtypes (p < 0.0001).

Global LINE1 Methylation

Global methylation at CpG loci in LINE1 elements was
measured in a subset of the samples from the CHTN
(N=41). We observed significant differences by tumor
histology, with both YST (average methylation = 66%,
standard deviation (SD) 10%) and dysgerminomas
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(average methylation = 42%, SD 14%) exhibiting signifi-
cantly lower methylation levels than normal adjacent
(average methylation =82%, SD 5%), mature teratomas
(average methylation = 78%, SD 5%), and immature tera-
tomas (average methylation =76%, SD 11%) (p < 0.0001).
No significant differences in average LINE1 methylation
were observed by tumor location (p = 0.39), sex (p = 0.82)
or age group (p = 0.36).

Methylation in imprinted genes

Lastly, methylation in the differentially methylated re-
gion (DMR) of imprinted genes differed by tumor hist-
ology and location in a subset of the samples (N =41)
(Table 4). The majority of germinomas had lower methy-
lation than expected for an imprinted gene (<33%) at
loci that are normally methylated on both the paternal
and maternal allele. Methylation patterns in teratomas
were dependent on tumor location. In ovarian terato-
mas, loci that are typically methylated on the paternal
allele had reduced methylation in almost all samples
while loci that are typically methylated on the maternal
allele had increased methylation. In contrast, with the
exception of H19 CTCF6, the majority of extragonadal
teratomas in both males and females had methylation
levels in the normal range for an imprinted locus
(33-66%). This was consistent for both mature and
immature teratomas (data not shown). The results for
YST were more variable, with some samples exhibiting
normal methylation levels at all loci while others had
either reduced or increased methylation.

Table 3 Significantly enriched pathways with reduced methylation in immature teratomas compared with mature

teratomas

Ingenuity Canonical Pathway Genes p-value

Role of Oct4 in Mammalian Embryonic Stem Cell Pluripotency SOX2,CASP6,SPP1,BMIT,RARA,PARP1 0.0015

Axonal Guidance Signaling GLI2,BMP4,BDNF,BMP2,PIK3R1,EGF, VEGFB,KRAS,LIMK1,PTCH2, 0.0045
EPHB1,GLI3,NGFR,DCC,EFNB3,ERBB2,ITGB1,TUBB3 WNT2B,MMP10,
EPHA3,PDGFB/NTRK2,EPHAS,EPHA2

Human Embryonic Stem Cell Pluripotency BMP4,BDNF,BMP2,PIK3R1,FGFRT,WNT2B,TDGF1,FGFR2,PDGFB, 0.0084
APC,SOX2,FGFR3,NTRK2,PDGFRA,CTNNB1,PDGFRB

PAK Signaling [TGB1,MYLK,PIK3R1,PDGFRA KRAS EPHA3,TNF,PDGFB PDGFRB,LIMK1 0.01

PDGF Signaling ABL2,PIK3RT,MAP3K1,PDGFRA,CAV1 KRAS EIF2AK2,PDGFB,PDGFRB 0.01

NF-kB Signaling MAP2K6,BMP4,BMP2,PIK3R1,FGFR1,EGF FGFR2,KRAS,DDR1,FGFR3, 0.02
NTRK2,NGFR,KDR,INS,PDGFRA EIF2AK2,TNF,PDGFRB

PTEN Signaling ITGB1,PIK3R1,FGFR1,FGFR2,KRAS,CCND1,DDR1,FGFR3,NTRK2, 0.03
NGFR KDR,PDGFRA,PDGFRB

Transcriptional Regulatory Network in Embryonic Stem Cells SOX2,ISL1,PAX6 0.03

Estrogen Biosynthesis CYP2ET,HSD17B12,CYP1B1 0.03

HER-2 Signaling in Breast Cancer ITGB1,PIK3R1,EGF,KRAS ERBB3,ERBB2,CCND1,AREG/AREGB 0.04

Gap Junction Signaling TUBB3,GUCY2D,PIK3R1,CAV1,EGF KRAS,CTNNB1,HTR2A 0.04

Actin Cytoskeleton Signaling [TGB1,MYLK,PIK3R1,FGF9,INS EGF,KRAS,PDGFB,APC, 0.04
FGF1,LIMKT,MATK

Embryonic Stem Cell Differentiation into Cardiac Lineages SOX2,ISL1 0.04
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Table 4 Methylation in imprinted genes by tumor location and histology
Females Males
YST Germinoma Teratoma YST Teratoma
Average Methylation' Ovarian Extragonadal
N? (%) N? (%) N? (%) N? (%) N? (%) N? (%)
Paternal Allele Methylated
H19 CTCF3
< 33% 2 (25) 4(67) 9 (90) 1(12) 2 (50) 1(25)
33-66% 6 (75) 2 (33) 1(10) 7 (88) 1(25) 3(75)
> 66% 0 0 0 0 1(25) 0
0.003
H19 CTCF6
< 33% 4 (50) 5(83) 9 (90) 2 (29) 2 (50) 3 (75)
33-66% 4 (50) 1017) 1(10) 5(@1) 2 (50) 1(25)
> 66% 0 0 0 0 0 0
0.04
IGF2
< 33% 2 (29) 4 (67) 8 (80) 1012 0 0
33-66% 5(71) 2 (33) 2 (20) 7 (88) 4 (100) 4 (100)
> 66% 0 0 0 0 0 0
0.02
Maternal Allele Methylated
KvDMR
< 33% 2 (25) 4 (67) 0 3(37) 3 (75) 1(25)
33-66% 6 (75) 2 (33) 2 (20) 5(63) 0 3(75)
> 66% 0 0 8 (80) 0 1(25) 0
<0.0001
PEG3
< 33% 0 6 100) 0 102 0 0
33-66% 6 (75) 0 1(10) 7 (88) 1(33) 4 (100)
> 66% 2 (25) 0 9 (90) 0 2 (67) 0
<0.0001
SNRPN
< 33% 3(38) 6 (100) 1(10) 2 (25) 4 (100) 0
33-66% 5(62) 0 0 6 (75) 0 4 (100)
> 66% 0 0 9 (90) 0 0 0
<0.0001

'Categories represent three methylation states based on the average percent methylation across all CpG loci analyzed in the DMR: <33% (hypomethylation), 33-66

% (median methylation), and >66% methylation (hypermethylation).
2N's do not sum to total due to missing data.

We also compared methylation at imprinted loci in
normal and tumor tissue in the 5 samples with adja-
cent normal DNA (Table 5). With a few exceptions,
the normal adjacent tissue exhibited DNA methyla-
tion within the expected range (34 — 66% methyla-
tion) in samples where the tumor tissues were
outside the expected range (0 — 33% or > 66%
methylation).

Discussion

We identified differential methylation by tumor his-
tology in a series of pediatric GCTs, with evidence that
YSTs exhibit promoter hypermethylation in a large
number of cancer-related genes while germinomas
and teratomas do not. These CpG loci were not
hypermethylated in the normal adjacent tissue from two
patients with YSTs, suggesting that methylation patterns
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Table 5 Average methylation at imprinted genes in five samples with paired normal adjacent tissue

Ovarian Teratoma
Age 21
Average Methylation'

Ovarian Germinoma
Age 7
Average Methylation'

Ovarian YST

Average Methylation'

Testicular YST
Age 1

Ovarian Germinoma
Age 11
Average Methylation'

Age 19
Average Methylation'

H19 CTCF3

Normal 48% 48% 61% 49% 50%
Tumor 13% 8% 63% 14% 26%
H19 CTCF6

Normal 36% 36% 44% 34% 36%
Tumor 10% 6% 39% 10% 26%
IGF2

Normal 54% 53% 68% 31% 63%
Tumor 12% 33% 26% 9% 55%
KvDMR

Normal 56% 54% 78% 53% 63%
Tumor 11% 97% 24% 10% 11%
SNRPN

Normal 41% 37% 55% NA? 21%
Tumor 10% 81% 19% 40% 2%
PEG3

Normal 34% 39% 549% NA? 37%
Tumor 9% 86% 88% 40% NA?

'Average percent methylation across all CpG loci analyzed in the DMR.
2NA: Sample failed to amplify.

also distinguish yolk sac tumor tissue from normal ovary
or testis tissue. Four pathways, most notably a human
embryonic stem cell pathway, were over-represented
among the CpG loci that were hypermethylated in YSTs.
A smaller number of CpG loci exhibited significantly dif-
ferent methylation in a comparison of mature and im-
mature teratomas, however these loci were strikingly
enriched for genes associated with embryonic stem cell
pluripotency and developmental signaling pathways,
such as PTEN, PDGF and NF-«B. In addition, immature
teratomas were enriched for differential methylation of
genes involved in axonal guidance signaling, reflecting
the neuroepithelial character of these tumors. We also
saw differences in global methylation at LINE1 elements
and in methylation at imprinted loci by tumor location
and histology.

Our results are consistent with the few studies to date
that have evaluated promoter hypermethylation in
pediatric GCT. Promoter hypermethylation has been
identified in three tumor suppressor genes (APC [6],
RUNX3 [7] and HICI [8]) in a sample of 10 infant tes-
ticular YSTs. Furukawa et al. [5] found differences in

methylation levels in 2 imprinted genes and 17 tumor
suppressor genes by tumor histology, with abnormal epi-
genetic reprogramming occurring in YSTs but not in
seminomas or teratomas. In a more recent study,
Jeyapalan et al. [9] evaluated both global hypomethyla-
tion of LINE-1 elements and promoter specific
hypermethylation using the Illumina GoldenGate Cancer
Methylation Panel in germinomas and YST (this study
did not include teratomas). They found evidence for glo-
bal hypomethylation in both histologic subtypes of GCT,
while promoter hypermethylation was identified only in
YST. Jeyapalan et al. [9] identified a list of 33 genes that
were hypermethylated in more than 80% of YSTs and in
<25% of germinomas. Of these 33 genes, all exhibited
significantly increased methylation in the YSTs in our
series, with 12 included in the list of 23 CpG loci with
greater than 2.75 fold increased methylation in YSTs
(Table 2). This hypermethylator phenotype in YSTs was
previously reported to be associated with increased
expression of DNMT3B [9].

Histologic characteristics of GCTs are dependent on
the degree of differentiation that has occurred at the
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time of transformation [27,28]. Cells that do not
undergo differentiation following transformation become
germinomas. According to one model, neoplastic cells
that undergo differentiation become embryonal carci-
nomas followed by further differentiation into embryonic
(teratomas) or extra-embryonic (choriocarcinoma or
YSTs) tumors. In addition, the partial erasure of methyla-
tion at imprinted genes in pediatric GCTs suggests that
they originate from a germ cell at an earlier stage of
development than adult TGCTs, which have complete
erasure of methylation at imprinted genes [28]. Despite
this difference, studies in adult GCTs have identified
methylation differences by tumor histology similar to
studies in the pediatric age group. Analyses of methyla-
tion in selected tumor suppressor genes [29-31] or global
methylation profiles [4,32] have identified increased
methylation in non-seminomas, including GCTs with a
YST component, compared to seminomas. At this time,
it is unclear whether these methylation differences by
tumor stage are driving tumor potential of the GCT, or if
they reflect the stage of normal embryonic development
of the germ cell when transformation occurred.

The lack of a difference in promoter methylation in
teratomas and dysgerminomas was somewhat surprising,
given that dysgerminomas are undifferentiated while
teratomas are differentiated. We did, however, observe
differences in global methylation of LINE1 elements in
teratomas compared with dysgerminomas. Consistent
with our findings, studies of methylation using 5™C
staining [2] and restriction landmark genomic scanning
[1] in adult testicular GCTs have reported that semino-
mas exhibit global hypomethylation while nonsemino-
mas exhibit widespread methylation. The study by
Jeyapalan et al. [9] did not include teratomas; however,
consistent with our findings, the germinomas could not
be distinguished from the normal tissue samples in-
cluded on the array and did not exhibit promoter hypo-
or hypermethylation. They did also observe global
hypomethylation in LINE-1 elements in both the
germinomas and the YSTs, consistent with previous data
suggesting that methylation of global repetitive elements
does not always correlate with methylation in the pro-
moter region of genes [33].

Previous studies have detected alterations in imprin-
ting in cancer in both adult and pediatric tumors, inclu-
ding GCTs [10-12] Genomic imprinting is an epigenetic
phenomenon (driven by methylation) that results in
parent-of-origin specific gene expression. Because PGCs
erase their inherited imprint and re-establish the cor-
rect sex-specific imprint following arrival on the genital
ridge, loss of imprinting (LOI) has been proposed as a
marker for the stage of PGC development when the
tumor arose [34-37]. Several years ago, we evaluated
genomic imprinting of H19/IGF2 in 11 informative
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tumors from this set of pediatric GCTs [38] and found
that LOI occurred in pediatric GCTs. These observations
were supported by the findings of an additional small
study of imprinting in pediatric GCTs [10]. Here, we
evaluated methylation in imprinted genes rather than al-
lele specific expression in order to increase the number
of samples with informative results, and we expanded
the analysis to include three genes that are typically
methylated on the maternal allele. We found significant
differences in methylation levels at imprinted loci by
tumor histology and location. As expected based on a
previous analysis of H19/IGF2 methylation in adult and
pediatric GCTs [11], the germinomas exhibited hypo-
methylation at all loci. Methylation at imprinted loci also
distinguished teratomas located in the ovary vs. extrago-
nadal locations, with ovarian teratomas exhibiting hypo-
methylation at CpG loci typically methylated on the paternal
allele and hypermethylation at CpG loci typically methy-
lated on the maternal allele. This finding provides further
evidence that ovarian teratomas are parthenogenetic in
origin [15,39,40]. Overall, these data provide direct support
for the theory that methylation status at imprinted loci in
GCTs represents the origin and stage of development of
the PGC when transformation occurred [28].

This study population represents a well-characterized
sample of pediatric GCTs including samples from all
three major histologic subgroups; however, several limi-
tations must be considered when interpreting the results.
The number of germinomas was relatively small and
consisted only of samples from females, which may have
limited our ability to detect differences in methylation in
this group. The lack of age-matched normal germ cell
tissue limited our ability to detect methylation differ-
ences between GCTs and normal germ cells. We also
evaluated methylation only in the CpG loci of a relatively
small number of genes that have previously been impli-
cated in cancer. A more unbiased evaluation of genome
wide methylation would provide a more comprehensive
picture of methylation patterns in GCTs.

Conclusion

These data demonstrate a distinct methylation pattern in
YSTs compared to germinomas and teratomas, consis-
ting of hypermethylation at a large number of genes
known to be involved in tumorigenesis. The CpG loci
identified as hypermethylated in YSTs included in our
study overlapped remarkably with the CpG loci identi-
fied in two independent series of YSTs recently reported
by Jeyapalan et al. [9]. Whether these alterations result
from exposure to environmental agents in utero or sim-
ply are a result of abnormal PGC development remains
to be elucidated. Further analyses will be required to bet-
ter understand the functional and therapeutic conse-
quences of this altered methylation signature.
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