11 research outputs found
Ambient Oxygen Levels Regulate Intestinal Dysbiosis and GVHD Severity After Allogeneic Stem Cell Transplantation
The severity of T cell-mediated gastrointestinal (GI) diseases such as graft-versus-host disease (GVHD) and inflammatory bowel diseases correlates with a decrease in the diversity of the host gut microbiome composition characterized by loss of obligate anaerobic commensals. The mechanisms underpinning these changes in the microbial structure remain unknown. Here, we show in multiple specific pathogen-free (SPF), gnotobiotic, and germ-free murine models of GI GVHD that the initiation of the intestinal damage by the pathogenic T cells altered ambient oxygen levels in the GI tract and caused dysbiosis. The change in oxygen levels contributed to the severity of intestinal pathology in a host intestinal HIF-1α- and a microbiome-dependent manner. Regulation of intestinal ambient oxygen levels with oral iron chelation mitigated dysbiosis and reduced the severity of the GI GVHD. Thus, targeting ambient intestinal oxygen levels may represent a novel, non-immunosuppressive strategy to mitigate T cell-driven intestinal diseases
Spatial Distribution, Air-Water Fugacity Ratios and Source Apportionment of Polychlorinated Biphenyls in the Lower Great Lakes Basin
Polychlorinated biphenyls (PCBs) continue to be contaminants of concern across the Great Lakes. It is unclear whether current concentrations are driven by ongoing primary emissions from their original uses, or whether ambient PCBs are dominated by their environmental cycling. Freely dissolved PCBs in air and water were measured using polyethylene passive samplers across Lakes Erie and Ontario during summer and fall, 2011, to investigate their spatial distribution, determine and apportion their sources and to asses their airâwater exchange gradients. Average gaseous and freely dissolved â29 PCB concentrations ranged from 5.0 to 160 pg/m3 and 2.0 to 55 pg/L respectively. Gaseous concentrations were significantly correlated (R2 = 0.80) with the urban area within a 3â20 km radius. Fugacity ratios indicated that the majority of PCBs are volatilizing from the water thus acting as a secondary source for the atmosphere. Dissolved PCBs were probably linked to PCB emissions from contaminated sites and areas of concern. Positive matrix factorization indicated that although volatilized Aroclors (gaseous PCBs) and unaltered Aroclors (dissolved PCBs) dominate in some samples, ongoing non-Aroclor sources such as paints/pigments (PCB 11) and coal/wood combustion showed significant contributions across the lower Great Lakes. Accordingly, control strategies should give further attention to PCBs emitted from current use sources
Hydrological legacy determines the type of enzyme inhibition in a peatlands chronosequence
© 2017 The Author(s). Peatland ecosystems contain one-third of the world's soil carbon store and many have been exposed to drought leading to a loss of carbon. Understanding biogeochemical mechanisms affecting decomposition in peatlands is essential for improving resilience of ecosystem function to predicted climate change. We investigated biogeochemical changes along a chronosequence of hydrological restoration (dry eroded gully, drain-blocke