6,701 research outputs found

    Active rendezvous between a low-earth orbit user spacecraft and the Space Transportation System (STS) shuttle

    Get PDF
    Active rendezvous of an unmanned spacecraft with the Space Transportation System (STS) Shuttle is considered. The various operational constraints facing both the maneuvering spacecraft and the Shuttle during such a rendezvous sequence are discussed. Specifically, the actively rendezvousing user spacecraft must arrive in the generic Shuttle control box at a specified time after Shuttle launch. In so doing it must at no point violate Shuttle separation requirements. In addition, the spacecraft must be able to initiate the transfer sequence from any point in its orbit. The four-burn rendezvous sequence incorporating two Hohmann transfers and an intermediate phasing orbit as a low-energy solution satisfying the above requirements are discussed. The general characteristics of the four-burn sequence are discussed, with emphasis placed on phase orbit altitude and delta-velocity requirements. The planning and execution of such a sequence in the operational environment are then considered. Factor crucial in maintaining the safety of both spacecraft, such as spacecraft separation and contingency analysis, are considered in detail

    Implications of a 130 GeV Gamma-Ray Line for Dark Matter

    Full text link
    Recent reports of a gamma-ray line feature at ~130 GeV in data from the Fermi Gamma-Ray Space Telescope have generated a great deal of interest in models in which dark matter particles annihilate with a sizable cross section to final states including photons. In this article, we take a model-independent approach, and discuss a number of possibilities for dark matter candidates which could potentially generate such a feature. While we identify several scenarios which could lead to such a gamma-ray line, these models are each fairly constrained. In particular, viable models require large couplings (g>1-3), and additional charged particles with masses in the range of approximately ~130-200 GeV. Furthermore, lower energy gamma-ray constraints from the Galactic Center force us to consider scenarios in which the dark matter annihilates in the early universe through velocity-suppressed processes, or to final states which yield relatively few gamma-rays (such as electrons, muons or neutrinos). An exception to these conclusions can be found in models in which the dark matter annihilates to heavy intermediate states which decay to photons to generate a line-like gamma-ray spectrum.Comment: 7 pages, 4 figure

    Analytical and experimental study of the dynamics of a single-tube counterflow boiler

    Get PDF
    Experimental and analytical study of dynamics of single tube counterflow boile

    Development of a bedrest muscle stress apparatus

    Get PDF
    In attempting further to define the deleterious effects of spaceflight on the human body, measurement systems and techniques were devised to determine the loss of skeletal muscle strength and tone as a result of spaceflight exposure. In order to determine how the muscle degradation process progresses with time during nonuse, a system for measuring muscle stress during bedrest was developed. The Bedrest Muscle Stress Apparatus is configured to slip snugly over the foot board of a standard hospital bed. Data collected with this device correlated well with pre- and post-bedrest data collected with the original skeletal muscle stress apparatus

    Probing Exotic Physics With Cosmic Neutrinos

    Full text link
    Traditionally, collider experiments have been the primary tool used in searching for particle physics beyond the Standard Model. In this talk, I will discuss alternative approaches for exploring exotic physics scenarios using high energy and ultra-high energy cosmic neutrinos. Such neutrinos can be used to study interactions at energies higher, and over baselines longer, than those accessible to colliders. In this way, neutrino astronomy can provide a window into fundamental physics which is highly complementary to collider techniques. I will discuss the role of neutrino astronomy in fundamental physics, considering the use of such techniques in studying several specific scenarios including low scale gravity models, Standard Model electroweak instanton induced interactions, decaying neutrinos and quantum decoherence.Comment: 11 pages, 6 figures; For the proceedings of From Colliders To Cosmic Rays, Prague, Czech Republic, September 7-13, 200

    Towards low-latency real-time detection of gravitational waves from compact binary coalescences in the era of advanced detectors

    Get PDF
    Electromagnetic (EM) follow-up observations of gravitational wave (GW) events will help shed light on the nature of the sources, and more can be learned if the EM follow-ups can start as soon as the GW event becomes observable. In this paper, we propose a computationally efficient time-domain algorithm capable of detecting gravitational waves (GWs) from coalescing binaries of compact objects with nearly zero time delay. In case when the signal is strong enough, our algorithm also has the flexibility to trigger EM observation before the merger. The key to the efficiency of our algorithm arises from the use of chains of so-called Infinite Impulse Response (IIR) filters, which filter time-series data recursively. Computational cost is further reduced by a template interpolation technique that requires filtering to be done only for a much coarser template bank than otherwise required to sufficiently recover optimal signal-to-noise ratio. Towards future detectors with sensitivity extending to lower frequencies, our algorithm's computational cost is shown to increase rather insignificantly compared to the conventional time-domain correlation method. Moreover, at latencies of less than hundreds to thousands of seconds, this method is expected to be computationally more efficient than the straightforward frequency-domain method.Comment: 19 pages, 6 figures, for PR

    Payload/orbiter contamination control requirement study, volume 2, exhibit A

    Get PDF
    The computer printout data generated during the Payload/Orbiter Contamination Control Requirement Study are presented. The computer listings of the input surface data matrices, the viewfactor data matrices, and the geometric relationship data matrices for the three orbiter/spacelab configurations analyzed in this study are given. These configurations have been broken up into the geometrical surfaces and nodes necessary to define the principal critical surfaces whether they are contaminant sources, experimental surfaces, or operational surfaces. A numbering scheme was established based upon nodal numbers that relates the various spacelab surfaces to a specific surface material or function. This numbering system was developed for the spacelab configurations such that future extension to a surface mapping capability could be developed as required

    Plasmonic meta-atoms and metasurfaces

    Get PDF
    Despite the extraordinary degree of interest in optical metamaterials in recent years, the hoped-for devices and applications have, in large part, yet to emerge. It is becoming clear that the first generation of metamaterial-based devices will most probably arise from their two-dimensional equivalents — metasurfaces. In this Review, we describe recent progress in the area of metasurfaces formed from plasmonic meta-atoms. In particular, we approach the subject from the perspective of the fundamental excitations supported by the meta-atoms and the interactions between them. We also identify some areas ripe for future research and indicate likely avenues for future device development.Engineering & Physical Sciences Research Council (EPSRC)Leverhulme Trus

    Summed Parallel Infinite Impulse Response (SPIIR) Filters For Low-Latency Gravitational Wave Detection

    Get PDF
    With the upgrade of current gravitational wave detectors, the first detection of gravitational wave signals is expected to occur in the next decade. Low-latency gravitational wave triggers will be necessary to make fast follow-up electromagnetic observations of events related to their source, e.g., prompt optical emission associated with short gamma-ray bursts. In this paper we present a new time-domain low-latency algorithm for identifying the presence of gravitational waves produced by compact binary coalescence events in noisy detector data. Our method calculates the signal to noise ratio from the summation of a bank of parallel infinite impulse response (IIR) filters. We show that our summed parallel infinite impulse response (SPIIR) method can retrieve the signal to noise ratio to greater than 99% of that produced from the optimal matched filter. We emphasise the benefits of the SPIIR method for advanced detectors, which will require larger template banks.Comment: 9 pages, 6 figures, for PR
    • …
    corecore