92 research outputs found

    Cosmic positron and antiproton constraints on the gauge-Higgs Dark Matter

    Full text link
    We calculate the cosmic ray positron and antiproton spectra of a gauge-Higgs dark matter candidate in a warped five-dimensional SO(5)×U(1)SO(5) \times U(1) gauge-Higgs unification model. The stability of the gauge-Higgs boson is guaranteed by the H parity under which only the Higgs boson is odd at low energy. The 4-point vertices of HHW^+W^- and HHZZ, allowed by H parity conservation, have the same magnitude as in the standard model, which yields efficient annihilation rate for mH>mWm_H > m_W. The most dominant annihilation channel is HHW+WH H \to W^+ W^- followed by the subsequent decays of the WW bosons into positrons or quarks, which undergo fragmentation into antiproton. Comparing with the observed positron and antiproton spectra with the PAMALA and Fermi/LAT, we found that the Higgs boson mass cannot be larger than 90 GeV, in order not to overrun the observations. Together with the constraint on not overclosing the Universe, the valid range of the dark matter mass is restricted to 70-90 GeV.Comment: 13 pages, 3 figure

    Antimatter signals of singlet scalar dark matter

    Full text link
    We consider the singlet scalar model of dark matter and study the expected antiproton and positron signals from dark matter annihilations. The regions of the viable parameter space of the model that are excluded by present data are determined, as well as those regions that will be probed by the forthcoming experiment AMS-02. In all cases, different propagation models are investigated, and the possible enhancement due to dark matter substructures is analyzed. We find that the antiproton signal is more easily detectable than the positron one over the whole parameter space. For a typical propagation model and without any boost factor, AMS-02 will be able to probe --via antiprotons-- the singlet model of dark matter up to masses of 600 GeV. Antiprotons constitute, therefore, a promising signal to constraint or detect the singlet scalar model.Comment: 24 pages, 8 figures. v2: minor improvements. Accepted for publication in JCA

    Dark Matter and the CACTUS Gamma-Ray Excess from Draco

    Get PDF
    The CACTUS atmospheric Cherenkov telescope collaboration recently reported a gamma-ray excess from the Draco dwarf spheroidal galaxy. Draco features a very low gas content and a large mass-to-light ratio, suggesting as a possible explanation annihilation of weakly interacting massive particles (WIMPs) in the Draco dark-matter halo. We show that with improved angular resolution, future measurements can determine whether the halo is cored or cuspy, as well as its scale radius. We find the relevant WIMP masses and annihilation cross sections and show that supersymmetric models can account for the required gamma-ray flux. The annihilation cross section range is found to be not compatible with a standard thermal relic dark-matter production. We compute for these supersymmetric models the resulting Draco gamma-ray flux in the GLAST energy range and the rates for direct neutralino detection and for the flux of neutrinos from neutralino annihilation in the Sun. We also discuss the possibility that the bulk of the signal detected by CACTUS comes from direct WIMP annihilation to two photons and point out that a decaying-dark-matter scenario for Draco is not compatible with the gamma-ray flux from the Galactic center and in the diffuse gamma-ray background.Comment: 24 pages, 10 figures; version accepted for publication in JCA

    Nambu-Goldstone Dark Matter and Cosmic Ray Electron and Positron Excess

    Full text link
    We propose a model of dark matter identified with a pseudo-Nambu-Goldstone boson in the dynamical supersymmetry breaking sector in a gauge mediation scenario. The dark matter particles annihilate via a below-threshold narrow resonance into a pair of R-axions each of which subsequently decays into a pair of light leptons. The Breit-Wigner enhancement explains the excess electron and positron fluxes reported in the recent cosmic ray experiments PAMELA, ATIC and PPB-BETS without postulating an overdensity in halo, and the limit on anti-proton flux from PAMELA is naturally evaded.Comment: 3 figure

    The Contribution of Fermi Gamma-Ray Pulsars to the local Flux of Cosmic-Ray Electrons and Positrons

    Full text link
    We analyze the contribution of gamma-ray pulsars from the first Fermi-Large Area Telescope (LAT) catalogue to the local flux of cosmic-ray electrons and positrons (e+e-). We present new distance estimates for all Fermi gamma-ray pulsars, based on the measured gamma-ray flux and pulse shape. We then estimate the contribution of gamma-ray pulsars to the local e+e- flux, in the context of a simple model for the pulsar e+e- emission. We find that 10 of the Fermi pulsars potentially contribute significantly to the measured e+e- flux in the energy range between 100 GeV and 1 TeV. Of the 10 pulsars, 2 are old EGRET gamma-ray pulsars, 2 pulsars were discovered with radio ephemerides, and 6 were discovered with the Fermi pulsar blind-search campaign. We argue that known radio pulsars fall in regions of parameter space where the e+e- contribution is predicted to be typically much smaller than from those regions where Fermi-LAT pulsars exist. However, comparing the Fermi gamma-ray flux sensitivity to the regions of pulsar parameter space where a significant e+e- contribution is predicted, we find that a few known radio pulsars that have not yet been detected by Fermi can also significantly contribute to the local e+e- flux if (i) they are closer than 2 kpc, and if (ii) they have a characteristic age on the order of one mega-year.Comment: 21 pages, 6 figures, accepted for publication in JCA

    Low energy antideuterons: shedding light on dark matter

    Get PDF
    Low energy antideuterons suffer a very low secondary and tertiary astrophysical background, while they can be abundantly synthesized in dark matter pair annihilations, therefore providing a privileged indirect dark matter detection technique. The recent publication of the first upper limit on the low energy antideuteron flux by the BESS collaboration, a new evaluation of the standard astrophysical background, and remarkable progresses in the development of a dedicated experiment, GAPS, motivate a new and accurate analysis of the antideuteron flux expected in particle dark matter models. To this extent, we consider here supersymmetric, universal extra-dimensions (UED) Kaluza-Klein and warped extra-dimensional dark matter models, and assess both the prospects for antideuteron detection as well as the various related sources of uncertainties. The GAPS experiment, even in a preliminary balloon-borne setup, will explore many supersymmetric configurations, and, eventually, in its final space-borne configuration, will be sensitive to primary antideuterons over the whole cosmologically allowed UED parameter space, providing a search technique which is highly complementary with other direct and indirect dark matter detection experiments.Comment: 26 pages, 7 figures; version to appear in JCA

    Kaluza-Klein Dark Matter, Electrons and Gamma Ray Telescopes

    Full text link
    Kaluza-Klein dark matter particles can annihilate efficiently into electron-positron pairs, providing a discrete feature (a sharp edge) in the cosmic e+ee^+ e^- spectrum at an energy equal to the particle's mass (typically several hundred GeV to one TeV). Although this feature is probably beyond the reach of satellite or balloon-based cosmic ray experiments (those that distinguish the charge and mass of the primary particle), gamma ray telescopes may provide an alternative detection method. Designed to observe very high-energy gamma-rays, ACTs also observe the diffuse flux of electron-induced electromagnetic showers. The GLAST satellite, designed for gamma ray astronomy, will also observe any high energy showers (several hundred GeV and above) in its calorimeter. We show that high-significance detections of an electron-positron feature from Kaluza-Klein dark matter annihilations are possible with GLAST, and also with ACTs such as HESS, VERITAS or MAGIC.Comment: 10 pages, 2 figure

    Section on Prospects for Dark Matter Detection of the White Paper on the Status and Future of Ground-Based TeV Gamma-Ray Astronomy

    Full text link
    This is a report on the findings of the dark matter science working group for the white paper on the status and future of TeV gamma-ray astronomy. The white paper was commissioned by the American Physical Society, and the full white paper can be found on astro-ph (arXiv:0810.0444). This detailed section discusses the prospects for dark matter detection with future gamma-ray experiments, and the complementarity of gamma-ray measurements with other indirect, direct or accelerator-based searches. We conclude that any comprehensive search for dark matter should include gamma-ray observations, both to identify the dark matter particle (through the charac- teristics of the gamma-ray spectrum) and to measure the distribution of dark matter in galactic halos.Comment: Report from the Dark Matter Science Working group of the APS commissioned White paper on ground-based TeV gamma ray astronomy (19 pages, 9 figures

    Planning the Future of U.S. Particle Physics (Snowmass 2013): Chapter 4: Cosmic Frontier

    Full text link
    These reports present the results of the 2013 Community Summer Study of the APS Division of Particles and Fields ("Snowmass 2013") on the future program of particle physics in the U.S. Chapter 4, on the Cosmic Frontier, discusses the program of research relevant to cosmology and the early universe. This area includes the study of dark matter and the search for its particle nature, the study of dark energy and inflation, and cosmic probes of fundamental symmetries.Comment: 61 page

    Spinless photon dark matter from two universal extra dimensions

    Full text link
    We explore the properties of dark matter in theories with two universal extra dimensions, where the lightest Kaluza-Klein state is a spin-0 neutral particle, representing a six-dimensional photon polarized along the extra dimensions. Annihilation of this 'spinless photon' proceeds predominantly through Higgs boson exchange, and is largely independent of other Kaluza-Klein particles. The measured relic abundance sets an upper limit on the spinless photon mass of 500 GeV, which decreases to almost 200 GeV if the Higgs boson is light. The phenomenology of this dark matter candidate is strikingly different from Kaluza-Klein dark matter in theories with one universal extra dimension. Elastic scattering of the spinless photon with quarks is helicity suppressed, making its direct detection challenging, although possible at upcoming experiments. The prospects for indirect detection with gamma rays and antimatter are similar to those of neutralinos. The rates predicted at neutrino telescopes are below the sensitivity of next-generation experiments.Comment: 22 pages. Figure 7 corrected, leading to improved prospects for direct detection. Some clarifying remarks include
    corecore