272 research outputs found

    Australian water security and Asian food security: complexity and macroeconomics of sustainability

    Get PDF
    The thesis focuses on the macroeconomics of sustainable development and the extension to energy, water and food security, using a system dynamics approach, i.e. the methods of differential equations systems with initial values. The work is divided into three related parts that build a narrative concerning the interaction between economics, policy, natural resources and society. First, after reviewing the concepts of complexity in environmental security, a simple system comprising three coupled differential equations is used to explain the effects of macroeconomic business cycles on the exploitation of ecological resources, and from this is inferred an implied importance of averting business cycles. The concept of entropy production is used to represent the exploitation of ecological resources. The second part establishes a system methodology inspired by Post Keynesian economics to develop the Murray-Darling Basin Economy Simulation Model that links food production/water users and food consumers at the micro scale, to the macroeconomic system dynamics. The goal of this study is to integrate and analyze the ecological-economic system in the Murray-Darling basin. The concepts of entropy production, useful work and income distribution are used as a bridge between the micro and macro subsystems. The system parameters are estimated using an ecological-economic data set for the Murray-Darling basin and for Australia (where data of the Basin are unavailable) from 1978-2005, and the model is validated using data from 2006-2012. The results reveal important structural linkages between the two subsystems and are used to predict the consequences of business cycles and government intervention for the coordination of growth and sustainability. The third, and final, part presents the development of an ``Asian Food Security Risk Engine'' that predicts the threat of civil unrest from food insecurity in Asian developing countries. A basal characteristics index for each developing country in Asia is defined and evaluated. Based on these measures, and introducing the concept of flow of anger, we use a differential equation system to integrate the threat of food security, the trigger for food riots, and food policy. The system parameters are estimated using a data set tracking indexes for threat, trigger and policy for Asian developing countries from 2006-2008, and the model is validated using data from 2009-2012. The results show the possible alternative approaches to simulating threat severity from food insecurity and are used to predict the threat of social unrest due to food security for a given country one month ahead

    Visualization of microtubule growth in cultured neurons via the use of EB3-GFP (end-binding protein 3-green fluorescent protein)

    Get PDF
    Several microtubule binding proteins, including CLIP-170 (cytoplasmic linker protein-170), CLIP-115, and EB1 (end-binding protein 1), have been shown to associate specifically with the ends of growing microtubules in non-neuronal cells, thereby regulating microtubule dynamics and the binding of microtubules to protein complexes, organelles, and membranes. When fused to GFP (green fluorescent protein), these proteins, which collectively are called +TIPs (plus end tracking proteins), also serve as powerful markers for visualizing microtubule growth events. Here we demonstrate that e

    Pericentrosomal targeting of Rab6 secretory vesicles by Bicaudal-D-related protein 1 (BICDR-1) regulates neuritogenesis

    Get PDF
    Membrane and secretory trafficking are essential for proper neuronal development. However, the molecular mechanisms that organize secretory trafficking are poorly understood. Here, we identify Bicaudal-D-related protein 1 (BICDR-1) as an effector of the small GTPase Rab6 and key component of the molecular machinery that controls secretory vesicle transport in developing neurons. BICDR-1 interacts with kinesin motor Kif1C, the dynein/dynactin retrograde motor complex, regulates the pericentrosomal localization of Rab6-positive secretory vesicles and is required for neural development in zebrafish. BICDR-1 expression is high during early neuronal development and strongly declines during neurite outgrowth. In young neurons, BICDR-1 accumulates Rab6 secretory vesicles around the centrosome, restricts anterograde secretory transport and inhibits neuritogenesis. Later during development, BICDR-1 expression is strongly reduced, which permits anterograde secretory transport required for neurite outgrowth. These results indicate an important role for BICDR-1 as temporal regulator of secretory trafficking during the early phase of neuronal differentiation

    Oxidative phosphorylation in human muscle in patients with ocular myopathy and after general anaesthesia

    Get PDF
    Abstract The fuel preference of human muscle mitochondria has been given. Substrates which are oxidized with low velocity cannot be used to detect defects in oxidative phosphorylation. After general anaesthesia, the oxygen uptake with the different substrates is much lower than after local analgesia. The latter was therefore used in the subsequent study. In 15 out of 18 patients with ocular myopathy, defects in oxidative phosporylation could be detected in isolated muscle mitochondria prepared from freshly biopsied tissue. Measurement of the activity of segments of the respiratory chain in homogenate from frozen muscle showed no, or minor defects. In two of these patients showing exercise intolerance, decreased oxidation of NAD+-linked substrates and apparently normal mitochondrial DNA, further study revealed deficiency of pyruvate dehydrogenase in a girl with ptosis and a high Km of complex I for NADH in a man. Both patients responded to vitamin therapy

    BicaudalD Actively Regulates Microtubule Motor Activity in Lipid Droplet Transport

    Get PDF
    A great deal of sub-cellular organelle positioning, and essentially all minus-ended organelle transport, depends on cytoplasmic dynein, but how dynein's function is regulated is not well understood. BicD is established to play a critical role in mediating dynein function-loss of BicD results in improperly localized nuclei, mRNA particles, and a dispersed Golgi apparatus-however exactly what BicD's role is remains unknown. Nonetheless, it is widely believed that BicD may act to tether dynein to cargos. Here we use a combination of biophysical and biochemical studies to investigate BicD's role in lipid droplet transport during Drosophila embryogenesis.Functional loss of BicD impairs the embryo's ability to control the net direction of droplet transport; the developmentally controlled reversal in transport is eliminated. We find that minimal BicD expression (near-BicD(null)) decreases the average run length of both plus and minus end directed microtubule (MT) based transport. A point mutation affecting the BicD N-terminus has very similar effects on transport during cellularization (phase II), but in phase III (gastrulation) motion actually appears better than in the wild-type.In contrast to a simple static tethering model of BicD function, or a role only in initial dynein recruitment to the cargo, our data uncovers a new dynamic role for BicD in actively regulating transport. Lipid droplets move bi-directionally, and our investigations demonstrate that BicD plays a critical-and temporally changing-role in balancing the relative contributions of plus-end and minus-end motors to control the net direction of transport. Our results suggest that while BicD might contribute to recruitment of dynein to the cargo it is not absolutely required for such dynein localization, and it clearly contributes to regulation, helping activation/inactivation of the motors

    Synapse Pathology in Psychiatric and Neurologic Disease

    Get PDF
    Inhibitory and excitatory synapses play a fundamental role in information processing in the brain. Excitatory synapses usually are situated on dendritic spines, small membrane protrusions that harbor glutamate receptors and postsynaptic density components and help transmit electrical signals. In recent years, it has become evident that spine morphology is intimately linked to synapse function—smaller spines have smaller synapses and support reduced synaptic transmission. The relationship between synaptic signaling, spine shape, and brain function is never more apparent than when the brain becomes dysfunctional. Many psychiatric and neurologic disorders, ranging from mental retardation and autism to Alzheimer’s disease and addiction, are accompanied by alterations in spine morphology and synapse number. In this review, we highlight the structure and molecular organization of synapses and discuss functional effects of synapse pathology in brain disease

    Evolving a photosynthetic organelle

    Get PDF
    The evolution of plastids from cyanobacteria is believed to represent a singularity in the history of life. The enigmatic amoeba Paulinella and its 'recently' acquired photosynthetic inclusions provide a fascinating system through which to gain fresh insight into how endosymbionts become organelles

    Discovery of Genes Activated by the Mitochondrial Unfolded Protein Response (mtUPR) and Cognate Promoter Elements

    Get PDF
    In an accompanying paper, we show that the mitochondrial Unfolded Protein Response or mtUPR is initiated by the activation of transcription of chop through an AP-1 element in the chop promoter. Further, we show that the c/ebpβ gene is similarly activated and CHOP and C/EBPβ subsequently hetero-dimerise to activate transcription of mtUPR responsive genes. Here, we report the discovery of six additional mtUPR responsive genes. We found that these genes encoding mitochondrial proteases YME1L1 and MPPβ, import component Tim17A and enzymes NDUFB2, endonuclease G and thioredoxin 2, all contain a CHOP element in their promoters. In contrast, genes encoding mitochondrial proteins Afg3L2, Paraplegin, Lon and SAM 50, which do not have a CHOP element, were not up-regulated. Conversely, genes with CHOP elements encoding cytosolic proteins were not induced by the accumulation of unfolded proteins in mitochondria. These results indicate that mtUPR responsive genes appear to share a requirement for a CHOP element, but that this is not sufficient for the regulation of the mtUPR. A more detailed analysis of promoters of mtUPR responsive genes revealed at least two additional highly conserved, putative regulatory sites either side of the CHOP element, one a motif of 12 bp which lies 14 bp upstream of the CHOP site and another 9 bp element, 2 bp downstream of the CHOP site. Both of these additional elements are conserved in the promoters of 9 of the ten mtUPR responsive genes we have identified so far, the exception being the Cpn60/10 bidirectional promoter. Mutation of each of these elements substantially reduced the mtUPR responsiveness of the promoters suggesting that these elements coordinately regulate mtUPR

    Corticosterone Alters AMPAR Mobility and Facilitates Bidirectional Synaptic Plasticity

    Get PDF
    Background: The stress hormone corticosterone has the ability both to enhance and suppress synaptic plasticity and learning and memory processes. However, until today there is very little known about the molecular mechanism that underlies the bidirectional effects of stress and corticosteroid hormones on synaptic efficacy and learning and memory processes. In this study we investigate the relationship between corticosterone and AMPA receptors which play a critical role in activity-dependent plasticity and hippocampal-dependent learning. Methodology/Principal Findings: Using immunocytochemistry and live cell imaging techniques we show that corticosterone selectively increases surface expression of the AMPAR subunit GluR2 in primary hippocampal cultures via a glucocorticoid receptor and protein synthesis dependent mechanism. In agreement, we report that corticosterone also dramatically increases the fraction of surface expressed GluR2 that undergo lateral diffusion. Furthermore, our data indicate that corticosterone facilitates NMDAR-invoked endocytosis of both synaptic and extra-synaptic GluR2 under conditions that weaken synaptic transmission. Conclusion/Significance: Our results reveal that corticosterone increases mobile GluR2 containing AMPARs. The enhanced lateral diffusion properties can both facilitate the recruitment of AMPARs but under appropriate conditions facilitate the loss of synaptic AMPARs (LTD). These actions may underlie both the facilitating and suppressive effects of corticosteroid hormones on synaptic plasticity and learning and memory and suggest that these hormones accentuate synaptic efficacy
    corecore