8 research outputs found

    Formulation of cell-based medicinal products: a question of life or death?

    Get PDF
    The formulation of cell-based medicinal products (CBMPs) poses major challenges because of their complexity, heterogeneity, interaction with their environment (e.g., the formulation buffer, interfaces), and susceptibility to degradation. These challenges can be quality, safety, and efficacy related. In this commentary we discuss the current status in formulation strategies of off-the-shelf and non-off-the-shelf (patient-specific) CBMPs and highlight advantages and disadvantages of each strategy. Analytical tools for the characterization and stability assessment of CBMP formulations are addressed as well. Finally, we discuss unmet needs and make some recommendations regarding the formulation of CBMPs. (C) 2020 American Pharmacists Association?. Published by Elsevier Inc. All rights reserved.Personalised Therapeutic

    Particulate impurities in cell-based medicinal products traced by flow imaging microscopy combined with deep learning for image analysis

    Get PDF
    Cell-based medicinal products (CBMPs) are rapidly gaining importance in the treatment of life-threatening diseases. However, the analytical toolbox for characterization of CBMPs is limited. The aim of our study was to develop a method based on flow imaging microscopy (FIM) for the detection, quantification and characterization of subvisible particulate impurities in CBMPs. Image analysis was performed by using an image classification approach based on a convolutional neural network (CNN). Jurkat cells and Dynabeads were used in our study as a representation of cellular material and non-cellular particulate impurities, respectively. We demonstrate that FIM assisted with CNN is a powerful method for the detection and quantification of Dynabeads and cells with other process related impurities, such as cell agglomerates, cell-bead adducts and debris. By using CNN, we achieved a more than 50-fold lower misclassification rate compared with the use of output parameters from the FIM software. The limit of detection was ~15 000 beads/mL in the presence of ~500 000 cells/mL, making this approach suitable for the detection of these particulate impurities in CBMPs. In conclusion, CNN-assisted FIM is a powerful method for the detection and quantification of cells, Dynabeads and other subvisible process impurities potentially present in CBMPs.Drug Delivery Technolog

    Editorial to Theme Issue on Cell Based Therapeutics

    No full text
    Personalised Therapeutic

    The science is there: key considerations for stabilizing viral vector-based Covid-19 vaccines

    No full text
    Once Covid-19 vaccines become available, 5-10 billion vaccine doses should be globally distributed, stored and administered. In this commentary, we discuss how this enormous challenge could be addressed for viral vector-based Covid-19 vaccines by learning from the wealth of formulation development experience gained over the years on stability issues related to live attenuated virus vaccines and viral vector vaccines for other diseases. This experience has led -over time- to major improvements on storage temperature, shelf-life and in-use stability requirements. First, we will cover work on 'classical' live attenuated virus vaccines as well as replication competent viral vector vaccines. Subsequently, we address replication deficient viral vector vaccines. Freeze drying and storage at 2-8 degrees C with a shelf life of years has become the norm. In the case of pandemics with incredibly high and urgent product demands, however, the desire for rapid and convenient distribution chains combined with short end-user storage times require that liquid formulations with shelf lives of months stored at 2-8 degrees C be considered. In confronting this "perfect storm" of Covid-19 vaccine stability challenges, understanding the many lessons learned from decades of development and manufacturing of live virus-based vaccines is the shortest path for finding promising and rapid solutions. (c) 2020 American Pharmacists Association (R). Published by Elsevier Inc. All rights reserved.Drug Delivery Technolog

    Shifting Paradigms Revisited: Biotechnology and the Pharmaceutical Sciences

    No full text
    In 2003, Crommelin et al. published an article titled: "Shifting paradigms: biopharmaceuticals versus low molecular weight drugs" (https://doi.org/10.1016/S0378-5173(03)00376-4). In the present commentary, 16 years later, we discuss pharmaceutically relevant aspects of the evolution of biologics since then. First, we discuss the increasing repertoire of biologics, in particular, the rapidly growing monoclonal antibody family and the advent of advanced therapy medicinal products. Next, we discuss trends in formulation and characterization as well as summarize our current insights into immunogenicity of biologics. We spend a separate section on new product(ion) paradigms for biologics, such as cell-free production systems, production of advanced therapy medicinal products, and downscaled production approaches. Furthermore, we share our views on issues related to reaching the patient, including routes and techniques of administration, alternative development models for affordable biologics, biosimilars, and handling of biologics. In the concluding section, we outline outstanding issues and make some suggestions for resolving those.BiopharmaceuticsDrug Delivery Technolog

    Plant- and Nutraceutical-based Approach for the Management of Diabetes and its Neurological Complications: A Narrative Review

    No full text
    corecore