518 research outputs found
Resistance noise in Bi_2Sr_2CaCu_2O
The resistance noise in a Bi_2Sr_2CaCu_2O thin film is found to
increase strongly in the underdoped regime. While the increase of the raw
resistance noise with decreasing temperature appears to roughly track the
previously reported pseudogap temperature for this material, standard noise
analysis rather suggests that the additional noise contribution is driven by
the proximity of the superconductor-insulator transition
Evaluation of a Health Education Intervention for Rural Preschool and Kindergarten Children in the Southeastern United States: A Cluster Randomized Trial
This research employed a matched-pairs randomized field experiment design to evaluate a classroom-based health education intervention for pre-Kindergarten and Kindergarten children in a rural region of the southeastern United States. Schools were matched on demographic characteristics, then one school from each pair was randomly assigned to the treatment group and one to the delayed treatment group. The intervention included a field trip experience and an integrated curriculum designed to increase knowledge about nutrition, physical activity, and sleep. Staff conducted individual assessments of changes in knowledge with a random sample of children from each classroom (252 children from treatment classrooms; 251 children from delayed treatment classrooms). We used a multilevel linear regression with maximum likelihood estimation to incorporate the effects of clustering at the classroom and school level while examining the effects of the intervention on individual assessment change scores. During the intervention period, an estimated 3,196 children (treatment: 1,348 students in 68 classrooms in 10 schools; delayed treatment: 1,848 students in 86 classrooms in 10 schools) participated in the intervention. Children in the treatment group had significantly larger assessment change scores than children in the delayed treatment group. Findings suggest significant beneficial effects of the intervention on health knowledge
Tuning the Correlation Decay in the Resistance Fluctuations of Multi-Species Networks
A new network model is proposed to describe the resistance noise
in disordered materials for a wide range of values ().
More precisely, we have considered the resistance fluctuations of a thin
resistor with granular structure in different stationary states: from nearly
equilibrium up to far from equilibrium conditions. This system has been
modelled as a network made by different species of resistors, distinguished by
their resistances, temperature coefficients and by the energies associated with
thermally activated processes of breaking and recovery. The correlation
behavior of the resistance fluctuations is analyzed as a function of the
temperature and applied current, in both the frequency and time domains. For
the noise frequency exponent, the model provides at low
currents, in the Ohmic regime, with decreasing inversely with the
temperature, and at high currents, in the non-Ohmic regime.
Since the threshold current associated with the onset of nonlinearity also
depends on the temperature, the proposed model qualitatively accounts for the
complicate behavior of versus temperature and current observed in many
experiments. Correspondingly, in the time domain, the auto-correlation function
of the resistance fluctuations displays a variety of behaviors which are tuned
by the external conditions.Comment: 26 pages, 16 figures, Submitted to JSTAT - Special issue SigmaPhi200
Fully automatic left ventricular myocardial strain estimation in 2D short-axis tagged magnetic resonance imaging
Cardiovascular diseases are among the leading causes of death and frequently result in local myocardial dysfunction. Among the numerous imaging modalities available to detect these dysfunctional regions, cardiac deformation imaging through tagged magnetic resonance imaging (t-MRI) has been an attractive approach. Nevertheless, fully automatic analysis of these data sets is still challenging. In this work, we present a fully automatic framework to estimate left ventricular myocardial deformation from t-MRI. This strategy performs automatic myocardial segmentation based on B-spline explicit active surfaces, which are initialized using an annular model. A non-rigid image-registration technique is then used to assess myocardial deformation. Three experiments were set up to validate the proposed framework using a clinical database of 75 patients. First, automatic segmentation accuracy was evaluated by comparing against manual delineations at one specific cardiac phase. The proposed solution showed an average perpendicular distance error of 2.35 +/- 1.21 mm and 2.27 +/- 1.02 mm for the endo- and epicardium, respectively. Second, starting from either manual or automatic segmentation, myocardial tracking was performed and the resulting strain curves were compared. It is shown that the automatic segmentation adds negligible differences during the strain-estimation stage, corroborating its accuracy. Finally, segmental strain was compared with scar tissue extent determined by delay-enhanced MRI. The results proved that both strain components were able to distinguish between normal and infarct regions. Overall, the proposed framework was shown to be accurate, robust, and attractive for clinical practice, as it overcomes several limitations of a manual analysis.FCT—Fundacão para a Ciência e a Tecnologia, Portugal, and the European Social Found, European Union, for funding support through the Programa Operacional Capital Humano (POCH) in the scope of the PhD grants SFRH/BD/95438/2013 (P Morais) and SFRH/BD/93443/2013 (S Queirós). This work was supported by the projects NORTE-07-0124-FEDER-000017 and NORTE-01-0145-FEDER-000013, co-funded by Programa Operacional Regional do Norte, Quadro de Referência Estratégico Nacional, through Fundo Europeu de Desenvolvimento Regional (FEDER). The authors would also like to acknowledge the EU (FP7) framework program, for the financial support of the DOPPLER-CIP project (grant no. 223615)info:eu-repo/semantics/publishedVersio
Low-frequency Current Fluctuations in Individual Semiconducting Single-Wall Carbon Nanotubes
We present a systematic study on low-frequency current fluctuations of
nano-devices consisting of one single semiconducting nanotube, which exhibit
significant 1/f-type noise. By examining devices with different switching
mechanisms, carrier types (electrons vs. holes), and channel lengths, we show
that the 1/f fluctuation level in semiconducting nanotubes is correlated to the
total number of transport carriers present in the system. However, the 1/f
noise level per carrier is not larger than that of most bulk conventional
semiconductors, e.g. Si. The pronounced noise level observed in nanotube
devices simply reflects on the small number of carriers involved in transport.
These results not only provide the basis to quantify the noise behavior in a
one-dimensional transport system, but also suggest a valuable way to
characterize low-dimensional nanostructures based on the 1/f fluctuation
phenomenon
Point process model of 1/f noise versus a sum of Lorentzians
We present a simple point process model of noise, covering
different values of the exponent . The signal of the model consists of
pulses or events. The interpulse, interevent, interarrival, recurrence or
waiting times of the signal are described by the general Langevin equation with
the multiplicative noise and stochastically diffuse in some interval resulting
in the power-law distribution. Our model is free from the requirement of a wide
distribution of relaxation times and from the power-law forms of the pulses. It
contains only one relaxation rate and yields spectra in a wide
range of frequency. We obtain explicit expressions for the power spectra and
present numerical illustrations of the model. Further we analyze the relation
of the point process model of noise with the Bernamont-Surdin-McWhorter
model, representing the signals as a sum of the uncorrelated components. We
show that the point process model is complementary to the model based on the
sum of signals with a wide-range distribution of the relaxation times. In
contrast to the Gaussian distribution of the signal intensity of the sum of the
uncorrelated components, the point process exhibits asymptotically a power-law
distribution of the signal intensity. The developed multiplicative point
process model of noise may be used for modeling and analysis of
stochastic processes in different systems with the power-law distribution of
the intensity of pulsing signals.Comment: 23 pages, 10 figures, to be published in Phys. Rev.
Zr-89-pembrolizumab biodistribution is influenced by PD-1-mediated uptake in lymphoid organs
Background To better predict response to immune checkpoint therapy and toxicity in healthy tissues, insight in the in vivo behavior of immune checkpoint targeting monoclonal antibodies is essential. Therefore, we aimed to study in vivo pharmacokinetics and whole-body distribution of zirconium-89 (Zr-89) labeled programmed cell death protein-1 (PD-1) targeting pembrolizumab with positron-emission tomography (PET) in humanized mice. Methods Humanized (huNOG) and non-humanized NOG mice were xenografted with human A375M melanoma cells. PET imaging was performed on day 7 post(89)Zr-pembrolizumab (10 mu g, 2.5 MBq) administration, followed by ex vivo biodistribution studies. Other huNOG mice bearing A375M tumors received a co-injection of excess (90 mu g) unlabeled pembrolizumab or(89)Zr-IgG(4)control (10 mu g, 2.5 MBq). Tumor and spleen tissue were studied with autoradiography and immunohistochemically including PD-1. Results PET imaging and biodistribution studies showed high(89)Zr-pembrolizumab uptake in tissues containing human immune cells, including spleen, lymph nodes and bone marrow. Tumor uptake of(89)Zr-pembrolizumab was lower than uptake in lymphoid tissues, but higher than uptake in other organs. High uptake in lymphoid tissues could be reduced by excess unlabeled pembrolizumab. Tracer activity in blood pool was increased by addition of unlabeled pembrolizumab, but tumor uptake was not affected. Autoradiography supported PET findings and immunohistochemical staining on spleen and lymph node tissue showed PD-1 positive cells, whereas tumor tissue was PD-1 negative. Conclusion Zr-89-pembrolizumab whole-body biodistribution showed high PD-1-mediated uptake in lymphoid tissues, such as spleen, lymph nodes and bone marrow, and modest tumor uptake. Our data may enable evaluation of(89)Zr-pembrolizumab whole-body distribution in patients
Strong Suppression of Electrical Noise in Bilayer Graphene Nano Devices
Low-frequency 1/f noise is ubiquitous, and dominates the signal-to-noise
performance in nanodevices. Here we investigate the noise characteristics of
single-layer and bilayer graphene nano-devices, and uncover an unexpected 1/f
noise behavior for bilayer devices. Graphene is a single layer of graphite,
where carbon atoms form a 2D honeycomb lattice. Despite the similar
composition, bilayer graphene (two graphene monolayers stacked in the natural
graphite order) is a distinct 2D system with a different band structure and
electrical properties. In graphene monolayers, the 1/f noise is found to follow
Hooge's empirical relation with a noise parameter comparable to that of bulk
semiconductors. However, this 1/f noise is strongly suppressed in bilayer
graphene devices, and exhibits an unusual dependence on the carrier density,
different from most other materials. The unexpected noise behavior in graphene
bilayers is associated with its unique band structure that varies with the
charge distribution among the two layers, resulting in an effective screening
of potential fluctuations due to external impurity charges. The findings here
point to exciting opportunities for graphene bilayers in low-noise
applications
Seasonal Distribution, Aggregation, and Habitat Selection of Common Carp in Clear Lake, Iowa
The common carp Cyprinus carpio is widely distributed and frequently considered a nuisance species outside its native range. Common carp are abundant in Clear Lake, Iowa, where their presence is both a symptom of degradation and an impediment to improving water quality and the sport fishery. We used radiotelemetry to quantify seasonal distribution, aggregation, and habitat selection of adult and subadult common carp in Clear Lake during 2005–2006 in an effort to guide future control strategies. Over a 22-month period, we recorded 1,951 locations of 54 adults and 60 subadults implanted with radio transmitters. Adults demonstrated a clear tendency to aggregate in an offshore area during the late fall and winter and in shallow, vegetated areas before and during spring spawning. Late-fall and winter aggregations were estimated to include a larger percentage of the tracked adults than spring aggregations. Subadults aggregated in shallow, vegetated areas during the spring and early summer. Our study, when considered in combination with previous research, suggests repeatable patterns of distribution, aggregation, and habitat selection that should facilitate common carp reduction programs in Clear Lake and similar systems
- …