49 research outputs found

    The Origin, Early Evolution and Predictability of Solar Eruptions

    Get PDF
    Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt

    Thermal Evolution and Magnetic Field Generation in Terrestrial Planets and Satellites

    Full text link

    Bi-allelic Loss-of-Function CACNA1B Mutations in Progressive Epilepsy-Dyskinesia.

    Get PDF
    The occurrence of non-epileptic hyperkinetic movements in the context of developmental epileptic encephalopathies is an increasingly recognized phenomenon. Identification of causative mutations provides an important insight into common pathogenic mechanisms that cause both seizures and abnormal motor control. We report bi-allelic loss-of-function CACNA1B variants in six children from three unrelated families whose affected members present with a complex and progressive neurological syndrome. All affected individuals presented with epileptic encephalopathy, severe neurodevelopmental delay (often with regression), and a hyperkinetic movement disorder. Additional neurological features included postnatal microcephaly and hypotonia. Five children died in childhood or adolescence (mean age of death: 9 years), mainly as a result of secondary respiratory complications. CACNA1B encodes the pore-forming subunit of the pre-synaptic neuronal voltage-gated calcium channel Cav2.2/N-type, crucial for SNARE-mediated neurotransmission, particularly in the early postnatal period. Bi-allelic loss-of-function variants in CACNA1B are predicted to cause disruption of Ca2+ influx, leading to impaired synaptic neurotransmission. The resultant effect on neuronal function is likely to be important in the development of involuntary movements and epilepsy. Overall, our findings provide further evidence for the key role of Cav2.2 in normal human neurodevelopment.MAK is funded by an NIHR Research Professorship and receives funding from the Wellcome Trust, Great Ormond Street Children's Hospital Charity, and Rosetrees Trust. E.M. received funding from the Rosetrees Trust (CD-A53) and Great Ormond Street Hospital Children's Charity. K.G. received funding from Temple Street Foundation. A.M. is funded by Great Ormond Street Hospital, the National Institute for Health Research (NIHR), and Biomedical Research Centre. F.L.R. and D.G. are funded by Cambridge Biomedical Research Centre. K.C. and A.S.J. are funded by NIHR Bioresource for Rare Diseases. The DDD Study presents independent research commissioned by the Health Innovation Challenge Fund (grant number HICF-1009-003), a parallel funding partnership between the Wellcome Trust and the Department of Health, and the Wellcome Trust Sanger Institute (grant number WT098051). We acknowledge support from the UK Department of Health via the NIHR comprehensive Biomedical Research Centre award to Guy's and St. Thomas' National Health Service (NHS) Foundation Trust in partnership with King's College London. This research was also supported by the NIHR Great Ormond Street Hospital Biomedical Research Centre. J.H.C. is in receipt of an NIHR Senior Investigator Award. The research team acknowledges the support of the NIHR through the Comprehensive Clinical Research Network. The views expressed are those of the author(s) and not necessarily those of the NHS, the NIHR, Department of Health, or Wellcome Trust. E.R.M. acknowledges support from NIHR Cambridge Biomedical Research Centre, an NIHR Senior Investigator Award, and the University of Cambridge has received salary support in respect of E.R.M. from the NHS in the East of England through the Clinical Academic Reserve. I.E.S. is supported by the National Health and Medical Research Council of Australia (Program Grant and Practitioner Fellowship)

    Plasma Sources in Planetary Magnetospheres: Mercury

    Full text link

    Influences de la sylviculture sur le risque de dégâts biotiques et abiotiques dans les peuplements forestiers

    Full text link

    Neurofeedback training for alcohol dependence versus treatment as usual: study protocol for a randomized controlled trial

    Get PDF
    Background Real-time functional magnetic resonance imaging (rtfMRI) is used for neurofeedback training (NFT). Preliminary results suggest that it can help patients to control their symptoms. This study uses rtfMRI NFT for relapse prevention in alcohol dependence. Methods/design Participants are alcohol-dependent patients who have completed a detoxification programme within the past 6 months and have remained abstinent. Potential participants are screened for eligibility, and those who are eligible are randomly assigned to the treatment group (receiving rtfMRI NFT in addition to treatment as usual) or the control group (receiving only treatment as usual). Participants in both groups are administered baseline assessments to measure their alcohol consumption and severity of dependence and a variety of psychological and behavioural characteristics that are hypothesised to predict success with rtfMRI NFT. During the following 4 months, experimental participants are given six NFT sessions, and before and after each session various alcohol-related measures are taken. Participants in the control group are given the same measures to coincide with their timing in the experimental group. Eight and 12 months after the baseline assessment, both groups are followed up with a battery of measures. The primary research questions are whether NFT can be used to teach participants to down-regulate their brain activation in the presence of alcohol stimuli or to up-regulate their brain activation in response to pictures related to healthy goal pursuits, and, if so, whether this translates into reductions in alcohol consumption. The primary outcome measures will be those derived from the functional brain imaging data. We are interested in improvements (i.e., reductions) in participants’ alcohol consumption from pretreatment levels, as indicated by three continuous variables, not simply whether or not the person has remained abstinent. The indices of interest are percentage of days abstinent, drinks per drinking day, and percentage of days of heavy drinking. General linear models will be used to compare the NFT group and the control group on these measures. Discussion Relapse in alcohol dependence is a recurring problem, and the present evaluation of the role of rtfMRI in its treatment holds promise for identifying a way to prevent relapse. Trial registration ClinicalTrials.gov Identifier: NCT02486900, registered on 26 June 2015
    corecore