3,690 research outputs found

    Sunspot rotation. I. A consequence of flux emergence

    Get PDF
    Context. Solar eruptions and high flare activity often accompany the rapid rotation of sunspots. The study of sunspot rotation and the mechanisms driving this motion are therefore key to our understanding of how the solar atmosphere attains the conditions necessary for large energy release. Aims. We aim to demonstrate and investigate the rotation of sunspots in a 3D numerical experiment of the emergence of a magnetic flux tube as it rises through the solar interior and emerges into the atmosphere. Furthermore, we seek to show that the sub-photospheric twist stored in the interior is injected into the solar atmosphere by means of a definitive rotation of the sunspots. Methods. A numerical experiment is performed to solve the 3D resistive magnetohydrodynamic (MHD) equations using a Lagrangian-Remap code. We track the emergence of a toroidal flux tube as it rises through the solar interior and emerges into the atmosphere investigating various quantities related to both the magnetic field and plasma. Results. Through detailed analysis of the numerical experiment, we find clear evidence that the photospheric footprints or sunspots of the flux tube undergo a rotation. Significant vertical vortical motions are found to develop within the two polarity sources after the field emerges. These rotational motions are found to leave the interior portion of the field untwisted and twist up the atmospheric portion of the field. This is shown by our analysis of the relative magnetic helicity as a significant portion of the interior helicity is transported to the atmosphere. In addition, there is a substantial transport of magnetic energy to the atmosphere. Rotation angles are also calculated by tracing selected fieldlines; the fieldlines threading through the sunspot are found to rotate through angles of up to 353 degrees over the course of the experiment

    Real-Time Cavity QED with Single Atoms

    Get PDF
    The combination of cold atoms and large coherent coupling enables investigations in a new regime in cavity QED with single-atom trajectories monitored in real time with high signal-to-noise ratio. The underlying “vacuum-Rabi” splitting is clearly reflected in the frequency dependence of atomic transit signals recorded atom by atom, with evidence for mechanical light forces for intracavity photon number <1. The nonlinear optical response of one atom in a cavity is observed to be in accord with the one-atom quantum theory but at variance with semiclassical predictions

    Conditional evolution in single-atom cavity QED

    Full text link
    We consider a typical setup of cavity QED consisting of a two-level atom interacting strongly with a single resonant electromagnetic field mode inside a cavity. The cavity is resonantly driven and the output undergoes continuous homodyne measurements. We derive an explicit expression for the state of the system conditional on a discrete photocount record. This expression takes a particularly simple form if the system is initially in the steady state. As a byproduct, we derive a general formula for the steady state that had been conjectured before in the strong driving limit.Comment: 15 pages, 1 postscript figure, added discussion of mode

    Real-time cavity QED with single atoms

    Get PDF
    We report the first measurement of the real-time evolution of the complex field amplitude brought on by single atom transits. We show the variation in time of both quadrature amplitudes (simultaneously recorded) of the light transmitted through the cavity, as well the resultant optical phase for a single atom transit event. In this particular measurement, the cavity and laser were both detuned by 10 MHz from the Cs resonance

    Discriminating cool-water from warm-water carbonates and their diagenetic environments using element geochemistry: the Oligocene Tikorangi Formation (Taranaki Basin) and the dolomite effect

    Get PDF
    Fields portrayed within bivariate element plots have been used to distinguish between carbonates formed in warm- (tropical) water and cool- (temperate) water depositional settings. Here, element concentrations (Ca, Mg, Sr, Na, Fe, and Mn) have been determined for the carbonate fraction of bulk samples from the late Oligocene Tikorangi Formation, a subsurface, mixed dolomite-calcite, cool-water limestone sequence in Taranaki Basin, New Zealand. While the occurrence of dolomite is rare in New Zealand Cenozoic carbonates, and in cool-water carbonates more generally, the dolomite in the Tikorangi carbonates is shown to have a dramatic effect on the "traditional" positioning of cool-water limestone fields within bivariate element plots. Rare undolomitised, wholly calcitic carbonate samples in the Tikorangi Formation have the following average composition: Mg 2800 ppm; Ca 319 100 ppm; Na 800 ppm; Fe 6300 ppm; Sr 2400 ppm; and Mn 300 ppm. Tikorangi Formation dolomite-rich samples (>15% dolomite) have average values of: Mg 53 400 ppm; Ca 290 400 ppm; Na 4700 ppm; Fe 28 100 ppm; Sr 5400 ppm; and Mn 500 ppm. Element-element plots for dolomite-bearing samples show elevated Mg, Na, and Sr values compared with most other low-Mg calcite New Zealand Cenozoic limestones. The increased trace element contents are directly attributable to the trace element-enriched nature of the burial-derived dolomites, termed here the "dolomite effect". Fe levels in the Tikorangi Formation carbonates far exceed both modern and ancient cool-water and warm-water analogues, while Sr values are also higher than those in modern Tasmanian cool-water carbonates, and approach modern Bahaman warm-water carbonate values. Trace element data used in conjunction with more traditional petrographic data have aided in the diagenetic interpretation of the carbonate-dominated Tikorangi sequence. The geochemical results have been particularly useful for providing more definitive evidence for deep burial dolomitisation of the deposits under the influence of marine-modified pore fluids

    Numerical simulations of kink instability in line-tied coronal loops

    Get PDF
    The results from numerical simulations carried out using a new shock-capturing, Lagrangian-remap, 3D MHD code, Lare3d are presented. We study the evolution of the m=1 kink mode instability in a photospherically line-tied coronal loop that has no net axial current. During the non-linear evolution of the kink instability, large current concentrations develop in the neighbourhood of the infinite length mode rational surface. We investigate whether this strong current saturates at a finite value or whether scaling indicates current sheet formation. In particular, we consider the effect of the shear, defined by where is the fieldline twist of the loop, on the current concentration. We also include a non-uniform resistivity in the simulations and observe the amount of free magnetic energy released by magnetic reconnection

    Retroactive quantum jumps in a strongly-coupled atom-field system

    Get PDF
    We investigate a novel type of conditional dynamic that occurs in the strongly-driven Jaynes-Cummings model with dissipation. Extending the work of Alsing and Carmichael [Quantum Opt. {\bf 3}, 13 (1991)], we present a combined numerical and analytic study of the Stochastic Master Equation that describes the system's conditional evolution when the cavity output is continuously observed via homodyne detection, but atomic spontaneous emission is not monitored at all. We find that quantum jumps of the atomic state are induced by its dynamical coupling to the optical field, in order retroactively to justify atypical fluctuations in ocurring in the homodyne photocurrent.Comment: 4 pages, uses RevTex, 5 EPS figure

    Scaling properties of cavity-enhanced atom cooling

    Full text link
    We extend an earlier semiclassical model to describe the dissipative motion of N atoms coupled to M modes inside a coherently driven high-finesse cavity. The description includes momentum diffusion via spontaneous emission and cavity decay. Simple analytical formulas for the steady-state temperature and the cooling time for a single atom are derived and show surprisingly good agreement with direct stochastic simulations of the semiclassical equations for N atoms with properly scaled parameters. A thorough comparison with standard free-space Doppler cooling is performed and yields a lower temperature and a cooling time enhancement by a factor of M times the square of the ratio of the atom-field coupling constant to the cavity decay rate. Finally it is shown that laser cooling with negligible spontaneous emission should indeed be possible, especially for relatively light particles in a strongly coupled field configuration.Comment: 7 pages, 5 figure

    Effect of point of care testing for C reactive protein and training in communication skills on antibiotic use in lower respiratory tract infections: cluster randomised trial

    Get PDF
    Objective To assess the effect of general practitioner testing for C reactive protein (disease approach) and receiving training in enhanced communication skills (illness approach) on antibiotic prescribing for lower respiratory tract infection

    Quantum Monte Carlo calculations of the one-body density matrix and excitation energies of silicon

    Full text link
    Quantum Monte Carlo (QMC) techniques are used to calculate the one-body density matrix and excitation energies for the valence electrons of bulk silicon. The one-body density matrix and energies are obtained from a Slater-Jastrow wave function with a determinant of local density approximation (LDA) orbitals. The QMC density matrix evaluated in a basis of LDA orbitals is strongly diagonally dominant. The natural orbitals obtained by diagonalizing the QMC density matrix resemble the LDA orbitals very closely. Replacing the determinant of LDA orbitals in the wave function by a determinant of natural orbitals makes no significant difference to the quality of the wave function's nodal surface, leaving the diffusion Monte Carlo energy unchanged. The Extended Koopmans' Theorem for correlated wave functions is used to calculate excitation energies for silicon, which are in reasonable agreement with the available experimental data. A diagonal approximation to the theorem, evaluated in the basis of LDA orbitals, works quite well for both the quasihole and quasielectron states. We have found that this approximation has an advantageous scaling with system size, allowing more efficient studies of larger systems.Comment: 13 pages, 4 figures. To appear in Phys. Rev.
    corecore