7,940 research outputs found

    MHD mode conversion in a stratified atmosphere

    Full text link
    Mode conversion in the region where the sound and Alfven speeds are equal is a complex process, which has been studied both analytically and numerically, and has been seen in observations. In order to further the understanding of this process we set up a simple, one-dimensional model, and examine wave propagation through this system using a combination of analytical and numerical techniques. Simulations are carried out in a gravitationally stratified atmosphere with a uniform, vertical magnetic field for both isothermal and non-isothermal cases. For the non-isothermal case a temperature profile is chosen to mimic the steep temperature gradient encountered at the transition region. In all simulations, a slow wave is driven on the upper boundary, thus propagating down from low-beta to high-beta plasma across the mode-conversion region. In addition, a detailed analytical study is carried out where we predict the amplitude and phase of the transmitted and converted components of the incident wave as it passes through the mode-conversion region. A comparison of these analytical predictions with the numerical results shows good agreement, giving us confidence in both techniques. This knowledge may be used to help determine wave types observed and give insight into which modes may be involved in coronal heating.Comment: 7 pages, 5 figure

    MHD Mode Conversion around a 2D Magnetic Null Point

    Get PDF
    Mode conversion occurs when a wave passes through a region where the sound and Alfven speeds are equal. At this point there is a resonance, which allows some of the incident wave to be converted into a different mode. We study this phenomenon in the vicinity of a two-dimensional, coronal null point. As a wave approaches the null it passes from low- to high-beta plasma, allowing conversion to take place. We simulate this numerically by sending in a slow magnetoacoustic wave from the upper boundary; as this passes through the conversion layer a fast wave can clearly be seen propagating ahead. Numerical simulations combined with an analytical WKB investigation allow us to determine and track both the incident and converted waves throughout the domain.Comment: 4 pages, 2 figure

    Arkansas Cotton Variety Test 2008

    Get PDF
    The primary goal of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed companies establish marketing strategies and assists producers in choosing varieties to plant

    Arkansas Cotton Variety Test 2007

    Get PDF
    The primary goal of the Arkansas Cotton Variety Test is to provide unbiased data regarding the agronomic performance of cotton varieties and advanced breeding lines in the major cotton-growing areas of Arkansas. This information helps seed companies establish marketing strategies and assists producers in choosing varieties to plant

    Sunspot rotation. I. A consequence of flux emergence

    Get PDF
    Context. Solar eruptions and high flare activity often accompany the rapid rotation of sunspots. The study of sunspot rotation and the mechanisms driving this motion are therefore key to our understanding of how the solar atmosphere attains the conditions necessary for large energy release. Aims. We aim to demonstrate and investigate the rotation of sunspots in a 3D numerical experiment of the emergence of a magnetic flux tube as it rises through the solar interior and emerges into the atmosphere. Furthermore, we seek to show that the sub-photospheric twist stored in the interior is injected into the solar atmosphere by means of a definitive rotation of the sunspots. Methods. A numerical experiment is performed to solve the 3D resistive magnetohydrodynamic (MHD) equations using a Lagrangian-Remap code. We track the emergence of a toroidal flux tube as it rises through the solar interior and emerges into the atmosphere investigating various quantities related to both the magnetic field and plasma. Results. Through detailed analysis of the numerical experiment, we find clear evidence that the photospheric footprints or sunspots of the flux tube undergo a rotation. Significant vertical vortical motions are found to develop within the two polarity sources after the field emerges. These rotational motions are found to leave the interior portion of the field untwisted and twist up the atmospheric portion of the field. This is shown by our analysis of the relative magnetic helicity as a significant portion of the interior helicity is transported to the atmosphere. In addition, there is a substantial transport of magnetic energy to the atmosphere. Rotation angles are also calculated by tracing selected fieldlines; the fieldlines threading through the sunspot are found to rotate through angles of up to 353 degrees over the course of the experiment

    Conditional evolution in single-atom cavity QED

    Full text link
    We consider a typical setup of cavity QED consisting of a two-level atom interacting strongly with a single resonant electromagnetic field mode inside a cavity. The cavity is resonantly driven and the output undergoes continuous homodyne measurements. We derive an explicit expression for the state of the system conditional on a discrete photocount record. This expression takes a particularly simple form if the system is initially in the steady state. As a byproduct, we derive a general formula for the steady state that had been conjectured before in the strong driving limit.Comment: 15 pages, 1 postscript figure, added discussion of mode
    corecore