106 research outputs found
Algebraic entropy in locally linearly compact vector spaces
We introduce algebraic entropy for continuous endomorphisms of locally linearly compact vector spaces over a discrete field, as a natural extension of the algebraic entropy for endomorphisms of discrete vector spaces studied in Giordano Bruno and Salce (Arab J Math 1:69\u201387, 2012). We show that the main properties continue to hold in the general context of locally linearly compact vector spaces, in particular we extend the Addition Theorem
Review article: MHD wave propagation near coronal null points of magnetic fields
We present a comprehensive review of MHD wave behaviour in the neighbourhood
of coronal null points: locations where the magnetic field, and hence the local
Alfven speed, is zero. The behaviour of all three MHD wave modes, i.e. the
Alfven wave and the fast and slow magnetoacoustic waves, has been investigated
in the neighbourhood of 2D, 2.5D and (to a certain extent) 3D magnetic null
points, for a variety of assumptions, configurations and geometries. In
general, it is found that the fast magnetoacoustic wave behaviour is dictated
by the Alfven-speed profile. In a plasma, the fast wave is focused
towards the null point by a refraction effect and all the wave energy, and thus
current density, accumulates close to the null point. Thus, null points will be
locations for preferential heating by fast waves. Independently, the Alfven
wave is found to propagate along magnetic fieldlines and is confined to the
fieldlines it is generated on. As the wave approaches the null point, it
spreads out due to the diverging fieldlines. Eventually, the Alfven wave
accumulates along the separatrices (in 2D) or along the spine or fan-plane (in
3D). Hence, Alfven wave energy will be preferentially dissipated at these
locations. It is clear that the magnetic field plays a fundamental role in the
propagation and properties of MHD waves in the neighbourhood of coronal null
points. This topic is a fundamental plasma process and results so far have also
lead to critical insights into reconnection, mode-coupling, quasi-periodic
pulsations and phase-mixing.Comment: 34 pages, 5 figures, invited review in Space Science Reviews => Note
this is a 2011 paper, not a 2010 pape
The Origin, Early Evolution and Predictability of Solar Eruptions
Coronal mass ejections (CMEs) were discovered in the early 1970s when space-borne coronagraphs revealed that eruptions of plasma are ejected from the Sun. Today, it is known that the Sun produces eruptive flares, filament eruptions, coronal mass ejections and failed eruptions; all thought to be due to a release of energy stored in the coronal magnetic field during its drastic reconfiguration. This review discusses the observations and physical mechanisms behind this eruptive activity, with a view to making an assessment of the current capability of forecasting these events for space weather risk and impact mitigation. Whilst a wealth of observations exist, and detailed models have been developed, there still exists a need to draw these approaches together. In particular more realistic models are encouraged in order to asses the full range of complexity of the solar atmosphere and the criteria for which an eruption is formed. From the observational side, a more detailed understanding of the role of photospheric flows and reconnection is needed in order to identify the evolutionary path that ultimately means a magnetic structure will erupt
Silene as a model system in ecology and evolution.
The genus Silene, studied by Darwin, Mendel and other early scientists, is re-emerging as a system for studying interrelated questions in ecology, evolution and developmental biology. These questions include sex chromosome evolution, epigenetic control of sex expression, genomic conflict and speciation. Its well-studied interactions with the pathogen Microbotryum has made Silene a model for the evolution and dynamics of disease in natural systems, and its interactions with herbivores have increased our understanding of multi-trophic ecological processes and the evolution of invasiveness. Molecular tools are now providing new approaches to many of these classical yet unresolved problems, and new progress is being made through combining phylogenetic, genomic and molecular evolutionary studies with ecological and phenotypic data
- …