26 research outputs found

    Geochemistry, Petrology, and Palynology of the Princess No. 3 Coal, Greenup County, Kentucky

    Get PDF
    The high volatile C bituminous-rank, Bolsovian-age Princess No. 3 coal, a correlative of the heavily-mined Hazard No. 7 coal and the Peach Orchard and Coalburg Lower Split coals, was investigated three sites at a mine in Greenup County, Kentucky. The coal exhibits a “dulling upwards” trend, with decreasing vitrinite and a greater tendency towards dull clarain and bone lithotypes towards the top of the coal. The relatively vitrinite-rich basal lithotype is marked by a dominance of lycopod tree spores. The palynology transitions upwards to a middle parting co-dominated by tree fern and small lycopod spores and an upper bench dominated by tree ferns with contributions from small ferns, cordaites, and calamites. The lithotypes generally have a moderate- to high-S content with a variable ash yield. Sulfur, Fe2O3, and certain siderophile elements are highest near the top of the coal. As observed in other coals, uranium and Ge are enriched at the top and bottom margins of the coal. The rare earth chemistry at the top of the coal has a significantly lighter distribution (higher LREE/HREE) than at the base of the coal

    Nano-Scale Rare Earth Distribution in Fly Ash Derived from the Combustion of the Fire Clay Coal, Kentucky

    Get PDF
    Fly ash from the combustion of eastern Kentucky Fire Clay coal in a southeastern United States pulverized-coal power plant was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). TEM combined with elemental analysis via energy dispersive X-ray spectroscopy (EDS) showed that rare earth elements (REE; specifically, La, Ce, Nd, Pr, and Sm) were distributed within glassy particles. In certain cases, the REE were accompanied by phosphorous, suggesting a monazite or similar mineral form. However, the electron diffraction patterns of apparent phosphate minerals were not definitive, and P-lean regions of the glass consisted of amorphous phases. Therefore, the distribution of the REE in the fly ash seemed to be in the form of TEM-visible nano-scale crystalline minerals, with additional distributions corresponding to overlapping ultra-fine minerals and even true atomic dispersion within the fly ash glass

    Notes on the Potential for the Concentration of Rare Earth Elements and Yttrium in Coal Combustion Fly Ash

    Get PDF
    Certain Central Appalachian coals, most notably the Fire Clay coal with a REY-enriched volcanic ash fall tonstein, are known to be enriched in rare earth elements. The Fire Clay tonstein has a greater contribution to the total coal + parting REY than would be inferred from its thickness, accounting for about 20%–35% of the REY in the coal + parting sequence. Underground mining, in particular, might include roof and floor rock and the within-seam partings in the mined product. Beneficiation, necessary to meet utility specifications, will remove some of the REY from the delivered product. In at least one previously published example, even though the tonstein was not present in the Fire Clay coal, the coal was enriched in REY. In this case, as well as mines that ship run-of-mine products to the utility, the shipped REY content should be virtually the same as for the mined coal. At the power plant, however, the delivered coal will be pulverized, generally accompanied by the elimination of some of the harder rock, before it is fired into the boiler. Overall, there are a wide range of variables between the geologic sample at the mine and the power plant, any or all of which could impact the concentration of REY or other critical materials in the coal combustion products

    Petrology, Physicochemical and Thermal Analyses of Selected Cretaceous Coals from the Benue Trough Basin in Nigeria

    Get PDF
    Abundant coal resources that were previously neglected due to a crude oil boom need revitalisation and integration into the national electricity mix to address the energy demands of the Nigerian population. Selected coal samples from the Benue Trough sedimentary basin in Nigeria were examined by various techniques, including proximate and ultimate analyses, organic petrography, Fourier transform infrared ray spectroscopy, and thermogravimetric analysis. Based on vitrinite reflectance, the Lafia-Obi (OLB), Garin Maiganga (GMG), Imiegba (IMG), and Okaba (OKB) coals are classified as subbituminous, while the Lamja1 (LMJ1), Lamja2 (LMJ2) and Chikila (CHK) coals are high volatile B bituminous. The Enugu (ENG) coal is on the boundary between subbituminous and high volatile C bituminous. Organic petrographic results indicate vitrinite and fusinite contents steadily increase from the Lower Benue Trough coals to the Upper Benue Trough coals, while semifusinite and total mineral contents follow a reverse pattern. Thermal decomposition occurred in three stages, i.e., drying, devolatilization, and coke formation above 700 °C; and the coal reactivity follows the following order, ENG \u3e IMG \u3e IGH \u3e CHK \u3e LMJ \u3e OKB \u3e GMG \u3e LFB. The higher temperatures (above 900 °C) are required to decompose the coals for efficient energy recovery. The LMJ1, LMJ2, OLB, CHK, GMG, and OKB coals can be exploited for electricity power generation. However, the Imeagha and Enugu coals are best suitable for both cement and power generation

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Nano-Scale Rare Earth Distribution in Fly Ash Derived from the Combustion of the Fire Clay Coal, Kentucky

    Get PDF
    Fly ash from the combustion of eastern Kentucky Fire Clay coal in a southeastern United States pulverized-coal power plant was studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM), and selected area electron diffraction (SAED). TEM combined with elemental analysis via energy dispersive X-ray spectroscopy (EDS) showed that rare earth elements (REE; specifically, La, Ce, Nd, Pr, and Sm) were distributed within glassy particles. In certain cases, the REE were accompanied by phosphorous, suggesting a monazite or similar mineral form. However, the electron diffraction patterns of apparent phosphate minerals were not definitive, and P-lean regions of the glass consisted of amorphous phases. Therefore, the distribution of the REE in the fly ash seemed to be in the form of TEM-visible nano-scale crystalline minerals, with additional distributions corresponding to overlapping ultra-fine minerals and even true atomic dispersion within the fly ash glass

    Recognition of peat depositional environments in coal: A review

    Get PDF
    Peat depositional environments, the sites where and conditions under which peat accumulates, significantly influence a resultant coal's physical properties, chemical composition, and coal utilization behavior. Recognition of peat depositional environments for coal is a challenging endeavor because coal's observed compositional properties not only result from a variety of geological processes operating during peat accumulation, but also reflect the influence of adjoining or external depositional sedimentary environments and alteration during later diagenesis and/or epigenesis. The maceral or microlithotype composition of any one layer of peat can be the product of years or decades of plant growth, death, decay, and post-burial infiltration by roots in addition to the symbiotic, mutualistic, parasitic, and saprophytic relationships with non-plant biota, such as arthropods, fungi, and bacteria. The overprint of increasing thermal maturation and fluid migration through time on the resulting coal can make these relationships difficult to recognize. Therefore, published models based on maceral composition alone must be used with great caution. Lipid compositions, even from lipid-poor low-rank coals, can provide important information about depositional environments and paleoclimate, especially if combined with the results of organic petrography and paleontological studies. Just as sulfur derived from seawater provides environmental clues, the ratios of two particularly relevant trace elements rather than a single trace element can be used to interpret peat depositional environments. Epigenetic minerals, as well as their corresponding chemical compositions should not be used for such a purpose; similarly, resistant terrigenous minerals deposited during peat accumulation in many cases should be used with considerable caution. The interactions of the biota present in the peat-forming ecosystem, often determined using palynological and geochemical proxies, and their interpretation in the context of geography and paleoclimate are important means for deciphering peat depositional environments. Overall, a combination of evidence from geochemistry, mineralogy, palynology, and petrology of coal and from stratigraphy, sedimentology, and sedimentary facies of related rocks is necessary for accurate and comprehensive determination of depositional environments. The need for interdisciplinary studies is underscored by peat compositional properties, which have been greatly affected by various processes during the syngenetic, diagenetic or epigenetic stages of coal formation.</p
    corecore