15 research outputs found

    Multidrug resistance transporter profile reveals MDR3 as a marker for stratification of blastemal Wilms tumour patients

    Get PDF
    Wilms tumour (WT) is the most common renal tumour in children. Most WT patients respond to chemotherapy, but subsets of tumours develop resistance to chemotherapeutic agents, which is a major obstacle in their successful treatment. Multidrug resistance transporters play a crucial role in the development of resistance in cancer due to the efflux of anticancer agents out of cells. The aim of this study was to explore several human multidrug resistance transporters in 46 WT and 40 nonneoplastic control tissues (normal kidney) from patients selected after chemotherapy treatment SIOP 93–01, SIOP 2001. Our data showed that the majority of the studied multidrug resistance transporters were downregulated or unchanged between tumours and control tissues. However, BCRP1, MDR3 and MRP1 were upregulated in tumours versus control tissues. MDR3 and MRP1 overexpression correlated with highrisk tumours (SIOP classification) (p = 0.0022 and p < 0.0001, respectively) and the time of disease-free survival was significantly shorter in patients with high transcript levels of MDR3 (p = 0.0359). MDR3 and MRP1 play a role in drug resistance in WT treatment, probably by alteration of an unspecific drug excretion system. Besides, within the blastemal subtype, we observed patients with low MDR3 expression were significantly associated with a better outcome than patients with high MDR3 expression. We could define two types of blastemal WT associated with different disease outcomes, enabling the stratification of blastemal WT patients based on the expression levels of the multidrug resistance transporter MDR3.Ministerio de Economía y Competitividad PI1401466, RD06/0020/0059, PI1100018, CD06/00001Red Tematica de Investigacion Cooperativa en Cancer RD12/0036/0017Unión Europea FP7-HEALTH- 2011-two-stage, Project ID 278742 EUROSARCInstituto de Salud Carlos III FIS PI13/0228

    The bitter side of epigenetics: variability and resistance to chemotherapy

    No full text
    One of the major obstacles to the development of effective new cancer treatments and the main factor for the increasing number of clinical trial failures appears to be the paucity of accurate, reproducible and robust drug resistance testing methods. Most research assessing the resistance of cancers to chemotherapy has concentrated on genetic-based molecular mechanisms, while the role of epigenetics in drug resistance has been generally overlooked. This is rather surprising given that an increasing body of evidence pointing to the fact that epigenetic mechanism alterations appear to play a pivotal role in cancer initiation, progression and development of chemoresistance. This resulted in a series of clinical trials involving epi-drug as single treatment or combined with cancer conventional drugs. In this review, we provided the main mechanisms by which the epigenetic regulators control the resistance to cancer drugs

    HMGA2 overexpression predicts relapse susceptibility of blastemal Wilms tumor patients

    No full text
    Wilms tumor (WT) is an embryonal malignant neoplasm of the kidney that accounts for 6–7% of all childhood cancers. WT seems to derive from multipotent embryonic renal stem cells that have failed to differentiate properly. Since mechanisms underlying WT tumorigenesis remain largely unknown, the aim of this study was to explore the expression of embryonic stem cell (ESC) markers in samples of WT patients after chemotherapy treatment SIOP protocol, as the gene expression patterns of ESC are like those of most cancer cells. We found that expression of ESC markers is heterogeneous, and depends on histological WT components. Interestingly, among ESC markers, HMGA2 was expressed significantly stronger in the blastemal component than in the stromal and the normal kidney. Moreover, two subsets of patients of WT blastemal type were identified, depending on the expression levels of HMGA2. High HMGA2 expression levels were significantly associated with a higher proliferation rate (p=0.0345) and worse patient prognosis (p=0.0289). The expression of HMGA2 was a stage-independent factor of clinical outcome in blastemal WT patients. Our multivariate analyses demonstrated the association between LIN28B–LET7A–HMGA2 expression, and the positive correlation between HMGA2 and SLUG expression (p=0.0358) in blastemal WT components. In addition, patients with a poor prognosis and high HMGA2 expression presented high levels of MDR3 (multidrug resistance transporter). Our findings suggest that HMGA2 plays a prominent role in the pathogenesis of a subset of blastemal WT, strongly associated with relapse and resistance to chemotherapy.LHP and DJGD are supported by Red Temática de Investigación Cooperativa en Cáncer (RD12/0036/0017). CS is supported by a contract from Nicolás Monardes Program, Consejería de Salud, Junta de Andalucía. Research in Enrique de Alava’s lab is supported by the Ministry of Economy and Competitiveness of Spain-FEDER (CIBERONC, PI1700464, RD06/0020/0059, FMGE) and the European Commission (FP7-HEALTH-2011-two-stage, Project ID 278742 EUROSARC). DJGD is a PhD researcher funded by the Consejería de Salud, Junta de Andalucía (PI-0197-2016). Research in Carmen Sáez’s lab is also supported by research grants from the Instituto de Salud Carlos III, FIS PI13/02282.Peer reviewe

    The hippocampal dentate gyrus is essential for generating contextual memories of fear and drug-induced reward

    No full text
    The hippocampus is believed to play a role in processing information relative to the context in which emotionally salient experiences occur but evidence on the specific contribution of the hippocampal dentate gyrus (DG) to these processes is limited. Here, we have used two classical behavioral paradigms to study the participation of the dorsal DG in context-conditioned reward and context-conditioned fear. Rats received intra-hippocampal vehicle or colchicine injections (4 μg/μl solution; 0.2 μl injections at 10 sites) that damaged the DG but spared other hippocampal subfields. In the first experiment, we used a place conditioning procedure pairing cocaine exposure (20 mg/kg, i.p.) with a specific context and vehicle treatment with another. While rats with sham lesions exhibited preference for the cocaine-paired context following conditioning, rats with lesions of the DG showed no evidence of cocaine-induced place preference. In the second experiment, rats with sham or colchicine lesions received a foot shock in a given context and conditioned freezing was measured upon reexposure to the shock-paired context (2, 24, 48 and 96 h after conditioning). Rats with sham lesions exhibited high levels of conditioned freezing when exposed to the conditioning context but rats with lesions of the DG showed impaired conditioning, behaving as controls that had experienced shock in a different context. These observations indicate that the integrity of the DG is essential for establishing a coherent representation of the context to which emotional experiences, either hedonic or aversive, are bound. © 2008 Elsevier Inc. All rights reserved.Peer Reviewe

    Multidrug resistance transporter profile reveals MDR3 as a marker for stratification of blastemal Wilms tumour patients

    No full text
    Wilms tumour (WT) is the most common renal tumour in children. Most WT patients respond to chemotherapy, but subsets of tumours develop resistance to chemotherapeutic agents, which is a major obstacle in their successful treatment. Multidrug resistance transporters play a crucial role in the development of resistance in cancer due to the efflux of anticancer agents out of cells. The aim of this study was to explore several human multidrug resistance transporters in 46 WT and 40 non-neoplastic control tissues (normal kidney) from patients selected after chemotherapy treatment SIOP 93–01, SIOP 2001. Our data showed that the majority of the studied multidrug resistance transporters were downregulated or unchanged between tumours and control tissues. However, BCRP1, MDR3 and MRP1 were upregulated in tumours versus control tissues. MDR3 and MRP1 overexpression correlated with high-risk tumours (SIOP classification) (p = 0.0022 and p < 0.0001, respectively) and the time of disease-free survival was significantly shorter in patients with high transcript levels of MDR3 (p = 0.0359). MDR3 and MRP1 play a role in drug resistance in WT treatment, probably by alteration of an unspecific drug excretion system. Besides, within the blastemal subtype, we observed patients with low MDR3 expression were significantly associated with a better outcome than patients with high MDR3 expression. We could define two types of blastemal WT associated with different disease outcomes, enabling the stratification of blastemal WT patients based on the expression levels of the multidrug resistance transporter MDR3.LHP and DJGD are supported by Red Temática de Investigación Cooperativa en Cáncer (RD12/0036/0017). CS was supported by a contract from Nicolás Monardes Program, Consejería de Salud, Junta de Andalucía. Research in Enrique de Alava’s lab is also supported by the Ministry of Economy and Competitiveness of Spain-FEDER (PI1401466, RD06/0020/0059, PI1100018, ISCIII postdoc grant CD06/00001), María García-Estrada Foundation and the European Commission (FP7-HEALTH-2011-two-stage, Project ID 278742 EUROSARC). Research in Carmen Sáez lab is also supported by research grants from the Instituto de Salud Carlos III, FIS PI13/02282.Peer reviewe

    In vivo P2X7 inhibition reduces amyloid plaques in Alzheimer's disease through GSK3β and secretases

    No full text
    β-amyloid (Aβ) peptide production from amyloid precursor protein (APP) is essential in the formation of the β-amyloid plaques characteristic of Alzheimer's disease. However, the extracellular signals that maintain the balance between nonpathogenic and pathologic forms of APP processing, mediated by α-secretase and β-secretase respectively, remain poorly understood. In the present work, we describe regulation of the processing of APP via the adenosine triphosphate (ATP) receptor P2X7R. In 2 different cellular lines, the inhibition of either native or overexpressed P2X7R increased α-secretase activity through inhibition of glycogen synthase kinase 3 (GSK-3). In vivo inhibition of the P2X7R in J20 mice, transgenic for mutant human APP, induced a significant decrease in the number of hippocampal amyloid plaques. This reduction correlated with a decrease in glycogen synthase kinase 3 activity in J20 mice, increasing the proteolytic processing of APP through an increase in α-secretase activity. The in vivo findings presented here demonstrate for the first time the therapeutic potential of P2X7R antagonism in the treatment of familiar Alzheimer's disease (FAD). © 2012 Elsevier Inc..Peer Reviewe

    CD8+ NKs as a potential biomarker of complete response and survival with lenalidomide plus R-GDP in the R2-GDP-GOTEL trial in recurrent/refractory diffuse large B cell lymphoma

    Get PDF
    BackgroundDiffuse large B cell lymphoma (DLBCL) is the most common non-Hodgkin lymphoma worldwide. DLBCL is an aggressive disease that can be cured with upfront standard chemoimmunotherapy schedules. However, in approximately 35-40% of the patients DLBCL relapses, and therefore, especially in this setting, the search for new prognostic and predictive biomarkers is an urgent need. Natural killer (NK) are effector cells characterized by playing an important role in antitumor immunity due to their cytotoxic capacity and a subset of circulating NK that express CD8 have a higher cytotoxic function. In this substudy of the R2-GDP-GOTEL trial, we have evaluated blood CD8+ NK cells as a predictor of treatment response and survival in relapsed/refractory (R/R) DLBCL patients.Methods78 patients received the R2-GDP schedule in the phase II trial. Blood samples were analyzed by flow cytometry. Statistical analyses were carried out in order to identify the prognostic potential of CD8+ NKs at baseline in R/R DLBCL patients.ResultsOur results showed that the number of circulating CD8+ NKs in R/R DLBCL patients were lower than in healthy donors, and it did not change during and after treatment. Nevertheless, the level of blood CD8+ NKs at baseline was associated with complete responses in patients with R/R DLBCL. In addition, we also demonstrated that CD8+ NKs levels have potential prognostic value in terms of overall survival in R/R DLBCL patients.ConclusionCD8+ NKs represent a new biomarker with prediction and prognosis potential to be considered in the clinical management of patients with R/R DLBCL.Clinical trial registrationhttps://www.clinicaltrialsregister.eu/ctr-search/search?query=2014-001620-29 EudraCT, ID:2014-001620-29

    Integrin alpha9 emerges as a key therapeutic target to reduce metastasis in rhabdomyosarcoma and neuroblastoma

    Get PDF
    The majority of current cancer therapies are aimed at reducing tumour growth, but there is lack of viable pharmacological options to reduce the formation of metastasis. This is a paradox, since more than 90% of cancer deaths are attributable to metastatic progression. Integrin alpha9 (ITGA9) has been previously described as playing an essential role in metastasis; however, little is known about the mechanism that links this protein to this process, being one of the less studied integrins. We have now deciphered the importance of ITGA9 in metastasis and provide evidence demonstrating its essentiality for metastatic dissemination in rhabdomyosarcoma and neuroblastoma. However, the most translational advance of this study is to reveal, for the first time, the possibility of reducing metastasis by pharmacological inhibition of ITGA9 with a synthetic peptide simulating a key interaction domain of ADAM proteins, in experimental metastasis models, not only in childhood cancers but also in a breast cancer model
    corecore