343 research outputs found
Associations between HLA and autoimmune neurological diseases with autoantibodies
Recently, several autoimmune neurological diseases have been defined by the presence of autoantibodies against different antigens of the nervous system. These autoantibodies have been demonstrated to be specific and useful biomarkers, and most of them are also pathogenic. These aspects have increased the value of autoantibodies in neurological practice, as they enable to establish more accurate diagnosis and to better understand the underlying mechanisms of the autoimmune neurological diseases when they are compared to those lacking them. Nevertheless, the exact mechanisms leading to the autoimmune response are still obscure. Genetic predisposition is likely to play a role in autoimmunity, HLA being the most reported genetic factor. Herein, we review the current knowledge about associations between HLA and autoimmune neurological diseases with autoantibodies. We report the main alleles and haplotypes, and discuss the clinical and pathogenic implications of these findings
Pathophysiology of paraneoplastic and autoimmune encephalitis: genes, infections, and checkpoint inhibitors
Paraneoplastic neurological syndromes (PNSs) are rare complications of systemic cancers that can affect all parts of the central and/or peripheral nervous system. A body of experimental and clinical data has demonstrated that the pathogenesis of PNSs is immune-mediated. Nevertheless, the mechanisms leading to immune tolerance breakdown in these conditions remain to be elucidated. Despite their rarity, PNSs offer a unique perspective to understand the complex interplay between cancer immunity, effect of immune checkpoint inhibitors (ICIs), and mechanisms underlying the attack of neurons in antibody-mediated neurological disorders, with potentially relevant therapeutic implications. In particular, it is reported that ICI treatment can unleash PNSs and that the immunopathological features of PNS-related tumors are distinctive, showing prominent tumor-infiltrating lymphocytes and germinal center reactions. Intriguingly, similar pathological substrates have gained further attention as potential biomarkers of ICI-sensitivity and oncological prognosis. Moreover, the genetic analysis of PNS-associated tumors has revealed specific molecular signatures and mutations in genes encoding onconeural proteins, leading to the production of highly immunogenic neoantigens. Other than PNSs, autoimmune encephalitides (AEs) comprise a recently described group of disorders characterized by prominent neuropsychiatric symptoms, diverse antibody spectrum, and less tight association with cancer. Other triggering factors seem to be involved in AEs. Recent data have shed light on the importance of preceding infections (in particular, herpes simplex virus encephalitis) in inducing neurological autoimmune disorders in susceptible individuals (those with a selective deficiency in the innate immune system). In addition, in some AEs (e.g. LGI1-antibody encephalitis) an association with specific host-related factors [e.g., human leukocyte antigen (HLA)] was clearly demonstrated. We provide herein a comprehensive review of the most recent findings in the field of PNSs and AEs, with particular focus on their triggering factors and immunopathogenesis
Role of LGI1 protein in synaptic transmission: From physiology to pathology
Leucine-Rich Glioma Inactivated protein 1 (LGI1) is a secreted neuronal protein highly expressed in the central nervous system and high amount are found in the hippocampus. An alteration of its function has been described in few families of patients with autosomal dominant temporal lobe epilepsy (ADLTE) or with autoimmune limbic encephalitis (LE), both characterized by epileptic seizures. Studies have shown that LGI1 plays an essential role during development, but also in neuronal excitability through an action on voltage-gated potassium Kv1.1 channels, and in synaptic transmission by regulating the surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors (AMPA-R). Over the last decade, a growing number of studies investigating LGI1 functions have been published. They aimed to improve the understanding of LGI1 function in the regulation of neuronal networks using different animal and cellular models. LGI1 appears to be a major actor of synaptic regulation by modulating trans-synaptically pre- and post-synaptic proteins. In this review, we will focus on LGI1 binding partners, “A Disintegrin And Metalloprotease (ADAM) 22 and 23”, the complex they form at the synapse, and will discuss the effects of LGI1 on neuronal excitability and synaptic transmission in physiological and pathological conditions. Finally, we will highlight new insights regarding N-terminal Leucine-Rich Repeat (LRR) domain and C-terminal Epitempin repeat (EPTP) domain and their potentially distinct role in LGI1 function
Sudden unexpected death in epilepsy and ictal asystole in patients with autoimmune encephalitis: a systematic review
Objective: As autoimmune encephalitis (AE) often involves the mesial temporal structures which are known to be involved in both sudden unexpected death in epilepsy (SUDEP) and ictal asystole (IA), it may represent a good model to study the physiopathology of these phenomena. Herein, we systematically reviewed the occurrence of SUDEP and IA in AE. Methods: We searched 4 databases (MEDLINE, Scopus, Embase, and Web of Science) for studies published between database inception and December 20, 2022, according to the PRISMA guidelines. We selected articles reporting cases of definite/probable/possible/near-SUDEP or IA in patients with possible/definite AE, or with histopathological signs of AE. Results: Of 230 records assessed, we included 11 cases: 7 SUDEP/near-SUDEP and 4 IA. All patients with IA were female. The median age at AE onset was 30 years (range: 15–65), and the median delay between AE onset and SUDEP was 11 months; 0.9 months for IA. All the patients presented new-onset seizures, and 10/11 also manifested psychiatric, cognitive, or amnesic disorders. In patients with SUDEP, 2/7 were antibody-positive (1 anti-LGI1, 1 anti-GABABR); all IA cases were antibody-positive (3 anti-NMDAR, 1 anti-GAD65). Six patients received steroid bolus, 3 intravenous immunoglobulin, and 3 plasmapheresis. A pacemaker was implanted in 3 patients with IA. The 6 survivors improved after treatment. Discussion: SUDEP and IA can be linked to AE, suggesting a role of the limbic system in their pathogenesis. IA tends to manifest in female patients with temporal lobe seizures early in AE, highlighting the importance of early diagnosis and treatment
Paraneoplastic encephalitis: clinically based approach on diagnosis and management
Paraneoplastic neurological syndromes (PNSs) comprise a subset of immune-mediated nervous system diseases triggered by an underlying malignancy. Each syndrome usually shows a distinct clinical presentation and outcome according to the associated neural antibodies. PNSs generally have a subacute onset with rapid progression and severe neurological disability. However, some patients may have hyperacute onset or even show chronic progression mimicking neurodegenerative diseases. Updated diagnostic criteria for PNS have been recently established in order to increase diagnostic specificity and to encourage standardisation of research initiatives related to PNS. Treatment for PNS includes oncological therapy and immunomodulation to halt neurological deterioration although current treatment options are seldom effective in reversing disability. Nevertheless, growing knowledge and better understanding of PNS pathogenesis promise better recognition, earlier diagnosis and novel treatment strategies. Considering that PNSs provide a model of effective anticancer immunity, the impact of these studies will extend far beyond the field of neurology
Diagnostic criteria for primary autoimmune cerebellar ataxia—guidelines from an international task force on immune-mediated cerebellar ataxias
Aside from well-characterized immune-mediated ataxias with a clear trigger and/or association with specific neuronal antibodies, a large number of idiopathic ataxias are suspected to be immune mediated but remain undiagnosed due to lack of diagnostic biomarkers. Primary autoimmune cerebellar ataxia (PACA) is the term used to describe this later group. An International Task Force comprising experts in the field of immune ataxias was commissioned by the Society for Research on the Cerebellum and Ataxias (SRCA) in order to devise diagnostic criteria aiming to improve the diagnosis of PACA. The proposed diagnostic criteria for PACA are based on clinical (mode of onset, pattern of cerebellar involvement, presence of other autoimmune diseases), imaging findings (MRI and if available MR spectroscopy showing preferential, but not exclusive involvement of vermis) and laboratory investigations (CSF pleocytosis and/or CSF-restricted IgG oligoclonal bands) parameters. The aim is to enable clinicians to consider PACA when encountering a patient with progressive ataxia and no other diagnosis given that such consideration might have important therapeutic implications
Assimilation of Remote Sensing Data for River Flows
Abstract. We address the problem of parameters identification and data assimilation for river flows modeled by the 2D St-Venant equations. In practice, available observations are very sparse especially during flood events (very few measurements of elevation at gauging stations in the main channel). We assume we have in addition either surface trajectories extracted from video images (lagrangian data) or space distributed water levels extracted from one satellite image. Then we identify parameters such as the inflow discharge or the topography and/or the initial state (depending on the configuration and the observations available). Numerical twin experiments demonstrate the efficiency of the present method for toy test cases
Cytokine dynamics and targeted immunotherapies in autoimmune encephalitis
Autoimmune encephalitides constitute a diverse group of immune-mediated central nervous system disorders mainly characterized by the presence of antibodies targeting neuronal or glial antigens. Despite the notable contribution of antibody discovery to the understanding of their physiopathology, the specific immune cells and inflammatory mediators involved in autoimmune encephalitis are still poorly defined. However, cytokines have recently emerged as crucial signalling molecules in the pathogenesis of autoimmune encephalitis. Cytokines are biologically active, soluble, low-molecular-weight proteins or glycoproteins involved in a wide variety of physiological functions, including central nervous system development and homeostasis, immune surveillance, as well as proliferation and maturation of immune cells. Since unbalanced cytokine expression is considered a hallmark of many autoimmune central nervous system disorders, their identification and quantification has become an essential element in personalized medicine applied to the field of neuroimmunology. Several studies have explored the cytokine profile of autoimmune encephalitis, but their interpretation and comparison is challenging due to their small sample sizes and extremely high heterogeneity, especially regarding the cytokines analysed, type of sample used, and associated neural antibody. Only the cytokine profile of anti-N-methyl-D-aspartate receptor encephalitis has extensively been investigated, with findings suggesting that, although humoral immunity is the main effector, T cells may also be relevant for the development of this disorder. A better understanding of cytokine dynamics governing neuroinflammation might offer the opportunity of developing new therapeutic strategies against specific immune cells, cytokines, antibodies, or intracellular signalling cascades, therefore leading to better outcomes and preventing undesired side effects of the presently used strategies. In this review, we first summarize the current knowledge about the role of cytokines in the pathogenesis of autoimmune encephalitis, combining theoretical analysis with experimental validations, to assess their suitability as clinical biomarkers. Second, we discuss the potential applicability of the novel targeted immunotherapies in autoimmune encephalitis depending on the immunobiology of the associated antibody, their limitations, as well as the main limitations that should be addressed in future studies
Consensus Paper: Latent Autoimmune Cerebellar Ataxia (LACA)
Immune-mediated cerebellar ataxias (IMCAs) have diverse etiologies. Patients with IMCAs develop cerebellar symptoms, characterized mainly by gait ataxia, showing an acute or subacute clinical course. We present a novel concept of latent autoimmune cerebellar ataxia (LACA), analogous to latent autoimmune diabetes in adults (LADA). LADA is a slowly progressive form of autoimmune diabetes where patients are often initially diagnosed with type 2 diabetes. The sole biomarker (serum anti-GAD antibody) is not always present or can fluctuate. However, the disease progresses to pancreatic beta-cell failure and insulin dependency within about 5 years. Due to the unclear autoimmune profile, clinicians often struggle to reach an early diagnosis during the period when insulin production is not severely compromised. LACA is also characterized by a slowly progressive course, lack of obvious autoimmune background, and difficulties in reaching a diagnosis in the absence of clear markers for IMCAs. The authors discuss two aspects of LACA: (1) the not manifestly evident autoimmunity and (2) the prodromal stage of IMCA’s characterized by a period of partial neuronal dysfunction where non-specific symptoms may occur. In order to achieve an early intervention and prevent cell death in the cerebellum, identification of the time-window before irreversible neuronal loss is critical. LACA occurs during this time-window when possible preservation of neural plasticity exists. Efforts should be devoted to the early identification of biological, neurophysiological, neuropsychological, morphological (brain morphometry), and multimodal biomarkers allowing early diagnosis and therapeutic intervention and to avoid irreversible neuronal loss
- …