3,247 research outputs found
Zener double exchange from local valence fluctuations in magnetite
Magnetite (FeO) is a mixed valent system where electronic
conductivity occurs on the B-site (octahedral) iron sublattice of the spinel
structure. Below K, a metal-insulator transition occurs which is
argued to arise from the charge ordering of 2+ and 3+ iron valences on the
B-sites (Verwey transition). Inelastic neutron scattering measurements show
that optical spin waves propagating on the B-site sublattice (80 meV) are
shifted upwards in energy above due to the occurrence of B-B
ferromagnetic double exchange in the mixed valent metallic phase. The double
exchange interaction affects only spin waves of symmetry, not all
modes, indicating that valence fluctuations are slow and the double exchange is
constrained by electron correlations above .Comment: 4 pages, 5 figure
Effectiveness of fecal-derived microbiota transfer using orally administered capsules for recurrent Clostridium difficile infection
BACKGROUND: Clostridium difficile infection (CDI), a complication of antibiotic-induced injury to the gut microbiome, is a prevalent and dangerous cause of infectious diarrhea. Antimicrobial therapy for CDI is typically effective for acute symptoms, but up to one third of patients later experience recurrent CDI. Fecal-derived microbiota transplantation (FMT) can ameliorate the underlying dysbiosis and is highly effective for recurrent CDI. Traditional methods of FMT are limited by patient discomfort, risk and inefficient procedures. Many individuals with recurrent CDI have extensive comorbidities and advanced age. Widespread use of FMT requires strategies that are non-invasive, scalable and applicable across healthcare settings. METHODS: A method to facilitate microbiota transfer was developed. Fecal samples were collected and screened for potential pathogens. Bacteria were purified, concentrated, cryopreserved and formulated into multi-layered capsules. Capsules were administered to patients with recurrent CDI, who were then monitored for 90 days. RESULTS: Thirteen women and six men with recurrent CDI were provided with microbiota transfer with orally administered capsules. The procedure was well tolerated. Thirteen individuals responded to a single course. Four patients were cured after a second course. There were 2 failures. The cumulative clinical cure rate of 89% is similar to the rates achieved with reported fecal-derived transplantation procedures. CONCLUSIONS: Recurrent CDI represents a profound dysbiosis and a debilitating chronic disease. Stable cure can be achieved by restoring the gut microbiome with an effective, well-tolerated oral capsule treatment. This strategy of microbiota transfer can be widely applied and is particularly appropriate for frail patients
Fast Non-Adiabatic Two Qubit Gates for the Kane Quantum Computer
In this paper we apply the canonical decomposition of two qubit unitaries to
find pulse schemes to control the proposed Kane quantum computer. We explicitly
find pulse sequences for the CNOT, swap, square root of swap and controlled Z
rotations. We analyze the speed and fidelity of these gates, both of which
compare favorably to existing schemes. The pulse sequences presented in this
paper are theoretically faster, higher fidelity, and simpler than existing
schemes. Any two qubit gate may be easily found and implemented using similar
pulse sequences. Numerical simulation is used to verify the accuracy of each
pulse scheme
Error Rate of the Kane Quantum Computer CNOT Gate in the Presence of Dephasing
We study the error rate of CNOT operations in the Kane solid state quantum
computer architecture. A spin Hamiltonian is used to describe the system.
Dephasing is included as exponential decay of the off diagonal elements of the
system's density matrix. Using available spin echo decay data, the CNOT error
rate is estimated at approsimately 10^{-3}.Comment: New version includes substantial additional data and merges two old
figures into one. (12 pages, 6 figures
Optical Conductivity in Mott-Hubbard Systems
We study the transfer of spectral weight in the optical spectra of a strongly
correlated electron system as a function of temperature and interaction
strength. Within a dynamical mean field theory of the Hubbard model that
becomes exact in the limit of large lattice coordination, we predict an
anomalous enhancement of spectral weight as a function of temperature in the
correlated metallic state and report on experimental measurements which agree
with this prediction in . We argue that the optical conductivity
anomalies in the metal are connected to the proximity to a crossover region in
the phase diagram of the model.Comment: 12 pages and 4 figures, to appear in Phys. Rev. Lett., v 75, p 105
(1995
Terahertz Conductivity at the Verwey Transition in Magnetite
The complex conductivity at the (Verwey) metal-insulator transition in
Fe_3O_4 has been investigated at THz and infrared frequencies. In the
insulating state, both the dynamic conductivity and the dielectric constant
reveal a power-law frequency dependence, the characteristic feature of hopping
conduction of localized charge carriers. The hopping process is limited to low
frequencies only, and a cutoff frequency nu_1 ~ 8 meV must be introduced for a
self-consistent description. On heating through the Verwey transition the
low-frequency dielectric constant abruptly decreases and becomes negative.
Together with the conductivity spectra this indicates a formation of a narrow
Drude-peak with a characteristic scattering rate of about 5 meV containing only
a small fraction of the available charge carriers. The spectra can be explained
assuming the transformation of the spectral weight from the hopping process to
the free-carrier conductivity. These results support an interpretation of
Verwey transition in magnetite as an insulator-semiconductor transition with
structure-induced changes in activation energy.Comment: 6 Pages, 3 Figure
Postexposure Treatment and Animal Rabies, Ontario, 1958-2000
This paper investigates the relationship between animal rabies and postexposure treatment (PET) in Ontario by examining the introduction of human diploid cell vaccine (HDCV) in 1980 and the initiation of an oral rabies vaccination program for wildlife in 1989. Introducing HDCV led to an immediate doubling of treatments. Both animal rabies and human treatments declined rapidly after the vaccination program was introduced, but human treatments have leveled off at approximately 1,000 per year
Brillouin scattering studies in FeO across the Verwey transition
Brillouin scattering studies have been carried out on high quality single
crystals of FeO with [100] and [110] faces in the temperature range of
300 to 30 K. The room temperature spectrum shows a surface Rayleigh wave (SRW)
mode at 8 GHz and a longitudinal acoustic (LA) mode at 60 GHz. The SRW mode
frequency shows a minimum at the Verwey transition temperature of 123 K.
The softening of the SRW mode frequency from about 250 K to can be
quantitatively understood as a result of a decrease in the shear elastic
constant C, arising from the coupling of shear strain to charge
fluctuations. On the other hand, the LA mode frequency does not show any
significant change around , but shows a large change in its intensity. The
latter shows a maximum at around 120 K in the cooling run and at 165 K in the
heating run, exhibiting a large hysteresis of 45 K. This significant change in
intensity may be related to the presence of stress-induced ordering of
Fe and Fe at the octahedral sites, as well as to stress-induced
domain wall motion.Comment: 14 pages, 3 figures, accepted in Physical Review B 200
- …