164 research outputs found

    AN EFFICIENT SOLUTION OF THE ELASTIC MECHANISM NON-LINEAR DIFFERENTIAL EQUATION OF MOTION

    Get PDF
    ABSTRACT A general form of non-linear differential motion equations for the elastic mechanism is presented. Based on the analysis of the structure property of the equations, a numerical solution method which combines the State Space Method with Iterative Method is put forward. The solution efficiency and precision are improved greatly through analyzing the solution method of the matrix exponent function and the equations with belt shape and side block coefficient matrices. Finally, as an example, the dynamic properties of a mold oscillation mechanism with 4-eccentric axes for continuous casting machine are analyzed. The results illustrate the correctness and feasibility of the method

    WTC2005-63258 RESEARCH ON THE IDENTIFICATION METHODS OF FRICTION IN KINEMATICAL JOINTS OF MECHANICAL SYSTEMS

    Get PDF
    ABSTRACT This paper describes two approaches for the simultaneous identification of the coulomb and viscous parameters in kinematical joints. One is a time-domain method (TDM) and the other is a frequency-domain method (FDM). Simulation shows that both of the two methods have good performances in identifying friction at high SNR (90dB). But at low SNR (20dB), the estimation accuracy of the frequency-domain method is higher than that of the time-domain method. A field experiment employing a linkage mechanism driven by motor is also carried out. The experimental results obtained by the two approaches are almost identical under different experiment conditions. It has been concluded that the presented identification methods of friction in kinematical joints are correct and applicable. INTRODUCTION Kinematical joint is an absolutely necessary structural connection in mechanical systems. The kinematical joint is responsible for transferring energy to a remote site, and may change the type of motion, as needed. The characteristics of kinematical joints have been studied in many paper

    Advances in the study of B cells in renal ischemia-reperfusion injury

    Get PDF
    Renal ischemia-reperfusion injury (IRI) is a non-negligible clinical challenge for clinicians in surgeries such as renal transplantation. Functional loss of renal tubular epithelial cell (TEC) in IRI leads to the development of acute kidney injury, delayed graft function (DGF), and allograft rejection. The available evidence indicates that cellular oxidative stress, cell death, microvascular dysfunction, and immune response play an important role in the pathogenesis of IRI. A variety of immune cells, including macrophages and T cells, are actively involved in the progression of IRI in the immune response. The role of B cells in IRI has been relatively less studied, but there is a growing body of evidence for the involvement of B cells, which involve in the development of IRI through innate immune responses, adaptive immune responses, and negative immune regulation. Therefore, therapies targeting B cells may be a potential direction to mitigate IRI. In this review, we summarize the current state of research on the role of B cells in IRI, explore the potential effects of different B cell subsets in the pathogenesis of IRI, and discuss possible targets of B cells for therapeutic aim in renal IRI

    Research Progress of Bacteriocins from Lactic Acid Bacteria Based on Bibliometric Analysis

    Get PDF
    Bacteriocins from lactic acid bacteria are kinds of natural proteins or peptides with antibacterial activities produced by lactic acid bacteria in the process of metabolism. They have the advantages of non-drug resistance, biodegradation, good antibacterial activity, etc., which have broad application prospects in food, medicine and feed fields. Based on bibliometrics, the literatures related to bacteriocins from lactic acid bacteria are searched in CNKI database and Web of Science (WOS) core collection database from 2000 to 2023, obtains 627 Chinese literatures and 2543 English literatures. CiteSpace software is used to analyze the research status and hot spots in this field from the perspective of annual number of published papers, core countries, authors, institutions and journals, highly cited literatures, keyword co-occurrence and co-clustering, etc.. The results show that the number of literatures has an increasing trend from 2000 to 2022. Spain, India and China are the top three countries in terms of number of literatures. The authors with the highest number of publications in CNKI database and WOS database are LI Pinglan from China Agricultural University and Todorov SD from University of Sao Paulo in Brazil, respectively. The journals with the highest number of publications are “Science and Technology of Food Industry” and “Journal of Appled Micbiogy”. In the CNKI database, keyword analysis reveals that most of the literatures are isolated, screened and identified from different food samples to obtain bacteriocin-producing lactic acid bacteria, and further evaluates the antibacterial activity of bacteriocins, and discusses the application in the food industry. The analysis of burst words shows that the focus of current research are antibacterial mechanism of bacteriocin and the relationship between bacteriocin and probiotics. In WOS database, the keywords of "gastrointestinal tract", "genetic characteristics", "Listeria mononucleogenes" and "antibacterial activity" appears more frequently. The main focus is the mining of bacteriocins from lactic acid bacteria toward antibiotic-resistant bacteria, and analysis of the genetic characteristics. The comprehensive analysis provides a reference and help for Chinese scientific researchers to engage in related research and predict the future development trend of the industry

    Transformer-based Acoustic Modeling for Hybrid Speech Recognition

    Full text link
    We propose and evaluate transformer-based acoustic models (AMs) for hybrid speech recognition. Several modeling choices are discussed in this work, including various positional embedding methods and an iterated loss to enable training deep transformers. We also present a preliminary study of using limited right context in transformer models, which makes it possible for streaming applications. We demonstrate that on the widely used Librispeech benchmark, our transformer-based AM outperforms the best published hybrid result by 19% to 26% relative when the standard n-gram language model (LM) is used. Combined with neural network LM for rescoring, our proposed approach achieves state-of-the-art results on Librispeech. Our findings are also confirmed on a much larger internal dataset.Comment: to appear in ICASSP 202

    Toll-like Interleukin 1 Receptor Regulator Is an Important Modulator of Inflammation Responsive Genes

    Get PDF
    TILRR (Toll-like interleukin-1 receptor regulator), a transcript variant of FREM1, is a novel regulatory component, which stimulates innate immune responses through binding to IL-1R1 (Interleukin-1 receptor, type 1) and TLR (Toll-like receptor) complex. However, it is not known whether TILRR expression influences other genes in the NFκB signal transduction and pro-inflammatory responses. Our previous study identified FREM1 as a novel candidate gene in HIV-1 resistance/susceptibility in the Pumwani Sex worker cohort. In this study, we investigated the effect of TILRR overexpression on expression of genes in the NFκB signaling pathway in vitro. The effect of TILRR on mRNA expression of 84 genes related to NFκB signal transduction pathway was investigated by qRT-PCR. Overexpression of TILRR on pro-inflammatory cytokine/chemokine(s) secretion in cell culture supernatants was analyzed using Bioplex multiplex bead assay. We found that TILRR overexpression significantly influenced expression of many genes in HeLa and VK2/E6E7 cells. Several cytokine/chemokine(s), including IL-6, IL-8 (CXCL8), IP-10, MCP-1, MIP-1β, and RANTES (CCL5) were significantly increased in the cell culture supernatants following TILRR overexpression. Although how TILRR influences the expression of these genes needs to be further studied, we are the first to show the influence of TILRR on many genes in the NFκB inflammatory pathways. The NFκB inflammatory response pathways are extremely important in microbial infection and pathogenesis, including HIV-1 transmission. Further study of the role of TILRR may identify the novel intervention targets and strategies against HIV infection

    High-Level Expression of Notch1 Increased the Risk of Metastasis in T1 Stage Clear Cell Renal Cell Carcinoma

    Get PDF
    Background: Although metastasis of clear cell renal cell carcinoma (ccRCC) is basically observed in late stage tumors, T1 stage metastasis of ccRCC can also be found with no definite molecular cause resulting inappropriate selection of surgery method and poor prognosis. Notch signaling is a conserved, widely expressed signal pathway that mediates various cellular processes in normal development and tumorigenesis. This study aims to explore the potential role and mechanism of Notch signaling in the metastasis of T1 stage ccRCC. Methodology/Principal Findings: The expression of Notch1 and Jagged1 were analyzed in tumor tissues and matched normal adjacent tissues obtained from 51 ccRCC patients. Compared to non-tumor tissues, Notch1 and Jagged1 expression was significantly elevated both in mRNA and protein levels in tumors. Tissue samples of localized and metastatic tumors were divided into three groups based on their tumor stages and the relative mRNA expression of Notch1 and Jagged1 were analyzed. Compared to localized tumors, Notch1 expression was significantly elevated in metastatic tumors in T1 stage while Jagged1 expression was not statistically different between localized and metastatic tumors of all stages. The average size of metastatic tumors was significantly larger than localized tumors in T1 stage ccRCC and the elevated expression of Notch1 was significantly positive correlated with the tumor diameter. The functional significance of Notch signaling was studied by transfection of 786-O, Caki-1 and HKC cell lines with full-length expression plasmids of Notch1 and Jagged1

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Detection of the Diffuse Supernova Neutrino Background with JUNO

    Get PDF
    As an underground multi-purpose neutrino detector with 20 kton liquid scintillator, Jiangmen Underground Neutrino Observatory (JUNO) is competitive with and complementary to the water-Cherenkov detectors on the search for the diffuse supernova neutrino background (DSNB). Typical supernova models predict 2-4 events per year within the optimal observation window in the JUNO detector. The dominant background is from the neutral-current (NC) interaction of atmospheric neutrinos with 12C nuclei, which surpasses the DSNB by more than one order of magnitude. We evaluated the systematic uncertainty of NC background from the spread of a variety of data-driven models and further developed a method to determine NC background within 15\% with {\it{in}} {\it{situ}} measurements after ten years of running. Besides, the NC-like backgrounds can be effectively suppressed by the intrinsic pulse-shape discrimination (PSD) capabilities of liquid scintillators. In this talk, I will present in detail the improvements on NC background uncertainty evaluation, PSD discriminator development, and finally, the potential of DSNB sensitivity in JUNO
    corecore