78 research outputs found

    Characterization of Shewanella sp. Isolated from Cultured Loach Misgurnus anguillicaudatus

    Get PDF
    Shewanella infection of fish has become a significant problem in aquaculture. In September 2014, a disease was seen in cultured loach (Misgurnus anguillicaudatus) in Xuzhou, central China. A gram-negative bacillus was isolated from the diseased loaches and was tentatively named strain MS1, which was then identified as Shewanella sp. by physiological and biochemical characteristics analysis. The strain MS1 showed highest 16S rRNA sequence identities (98.93%, 98.87%) with the latest two species listed (Shewanella sp. MR7, Shewanella sp. MR4). The phylogenetic tree constructed on the basis of 16S rRNA gene sequences strongly indicated that the strain MS1 is most closely related to the new Shewanella strains MR7 and MR4. The isolate MS1 was confirmed as the pathogen of the infected loaches by experimental reinoculation. The strain was susceptible to most antimicrobial agents tested, but resistant to glycopeptides (vancomycin, teicoplanin) and lincosamide (lincomycin, clindamycin). This is the second report on Shewanella sp. isolated from the diseased loach

    Analysis on the Settlement of Adjacent Buildings Caused by the Underpassing Construction of the Biased Tunnel

    Get PDF
    Through the simulation analysis of the settlement and deformation law of the surface buildings caused by the construction of the biased tunnel, the following points are obtained: (1) The Peak formula is revised, and the influence range of the biased tunnel is predicted based on the formula. (2) It is concluded that when the tunnel is biased, the position of maximum deformation caused by ground settlement is generally in a parallel area 0.5 times the buried depth from the center line of the tunnel. (3) Through the double-layer verification of simulation analysis and monitoring measurement data, prior to the construction of buildings with similar weak foundations, their foundations should be reinforced in advance. (4) In the process of this simulation, the complicated influence of water pressure on tunnel excavation was not considered, which can be further optimized in the later stage

    Biochanin a Enhances the Defense Against Salmonella enterica Infection Through AMPK/ULK1/mTOR-Mediated Autophagy and Extracellular Traps and Reversing SPI-1-Dependent Macrophage (MΦ) M2 Polarization

    Get PDF
    A novel treatment regimen for bacterial infections is the pharmacological enhancement of the host's immune defenses. We demonstrated that biochanin A (BCA), an isoflavone constituent in some plants, could enhance both intra- and extracellular bactericidal activity of host cells. First, BCA could induce a complete autophagic response in nonphagocytic cells (HeLa) or macrophages (MΦ) via the AMPK/ULK1/mTOR pathway and Beclin-1-dependent manner, and BCA enhanced the killing of invading Salmonella by autophagy through reinforcing ubiquitinated adapter protein (LRSAM1, NDP52 and p62)-mediated recognition of intracellular bacteria and through the formation of autophagolysosomes. Second, we demonstrated that BCA could enhance the release of MΦ extracellular traps (METs) to remove extracellular Salmonella also via the AMPK/ULK1/mTOR pathway, not through reactive oxygen species (ROS) pathway. Furtherly, in a Salmonella-infected mouse model, BCA treatment increased intra- and extracellular bactericidal activity through the strengthening autophagy and MET production, respectively, in peritoneal MΦ, liver and spleen tissue. Additionally, our findings showed that BCA downregulated SPI-1 (Salmonella pathogenicity island 1) expression during Salmonella infection in vitro and in vivo to reverse the MΦ M2 polarization, which was different from the MΦ M1 phenotype caused by most of bacteria infection. Together, these findings suggest that BCA has an immunomodulatory effect on Salmonella-infected host cells and enhances their bactericidal activity in vitro and in vivo through autophagy, extracellular traps and regulation of MΦ polarization

    The TRAPs From Microglial Vesicles Protect Against Listeria Infection in the CNS

    Get PDF
    Previous studies have demonstrated that T cells and microglia could fight against cerebral Listeria monocytogenes (Listeria); however, their synergistic anti-Listeria mechanisms remain unknown. Following Listeria infection in a culture system, we found that microglia, but not nerve cells, could release extracellular traps (ETs) which originated from microglial vesicles. Specific inhibitor analysis showed that extracellular DNA (eDNA), matrix metallopeptidases (MMP9 and MMP12), citrullinated histone H3, and peptidyl arginine deiminase 2 were the major components of microglial ETs (MiETs) and were also the components of vesicles. Systematic analysis indicated that Listeria-induced MiETs were cytosolic reactive oxygen species (ROS)- and NADPH oxidase (NOX)-dependent and involved ERK. MiETs were exhibited in Listeria-infected mouse brain and might protected against Listeria infection via bacterial killing in a mouse meningitis model, and MiETs existed in cerebrospinal fluid (CSF) from Listeria meningitis patients in vivo and in vitro. Additionally, interferon-γ could induce MiET formation in Listeria-infected microglia in vitro that was mediated by NOX, and there was a positive relationship between the elevated level of IFN-γ and eDNA and nucleosomes in the brain homogenates and CSF of Listeria meningitis model mice and in the CSF before treatment in clinical Listeria meningitis patients. Together, this is the first report of MiET formation, these findings pave the way for deeper exploration of the innate immune response to pathogens in CNS

    Real-time Monitoring for the Next Core-Collapse Supernova in JUNO

    Full text link
    Core-collapse supernova (CCSN) is one of the most energetic astrophysical events in the Universe. The early and prompt detection of neutrinos before (pre-SN) and during the SN burst is a unique opportunity to realize the multi-messenger observation of the CCSN events. In this work, we describe the monitoring concept and present the sensitivity of the system to the pre-SN and SN neutrinos at the Jiangmen Underground Neutrino Observatory (JUNO), which is a 20 kton liquid scintillator detector under construction in South China. The real-time monitoring system is designed with both the prompt monitors on the electronic board and online monitors at the data acquisition stage, in order to ensure both the alert speed and alert coverage of progenitor stars. By assuming a false alert rate of 1 per year, this monitoring system can be sensitive to the pre-SN neutrinos up to the distance of about 1.6 (0.9) kpc and SN neutrinos up to about 370 (360) kpc for a progenitor mass of 30MM_{\odot} for the case of normal (inverted) mass ordering. The pointing ability of the CCSN is evaluated by using the accumulated event anisotropy of the inverse beta decay interactions from pre-SN or SN neutrinos, which, along with the early alert, can play important roles for the followup multi-messenger observations of the next Galactic or nearby extragalactic CCSN.Comment: 24 pages, 9 figure

    Function projective synchronization in complex dynamical networks with time delay via hybrid feedback control

    No full text
    This paper investigates the problem of function projective synchronization for general complex dynamical networks with time delay. A hybrid feedback control method is designed to achieve function projective synchronization for complex dynamical networks, one with constant time delay and one with time-varying coupling delay. Numerical examples are provided to show the effectiveness of the proposed method. © 2012 Elsevier Ltd. All rights reserved.Hongyue Dua, Peng Shi, Ning Lü

    Global Trends in Research on Cell-Free Nucleic Acids in Obstetrics and Gynecology during 2017–2021

    No full text
    Objectives. The objectives of this study were to identify global trends in research on cell-free deoxyribonucleic acid (cfDNA) from a bibliometric perspective and provide researchers with new research hotspots. Methods. In all, we extracted 5038 pieces of literature from PubMed and 527 articles from the Web of Science Core Collection (WoSCC) database related to cfDNA published from 1 January 2017 to 31 December 2021. For PubMed literature, we employed co-word, biclustering, and strategic diagram analysis to describe the trends in research on cfDNA in the said five years. Then, we used VOSviewer analysis for the WoSCC database to display the trends in research on cfDNA in obstetrics and gynecology during 2017–2021. Results. Strategy diagram analysis of 95 major Medical Subject Headings terms extracted from 5038 pieces of literature indicated that cfDNA sequence analysis for non-invasive prenatal and genetic testing and its application in the fields of neoplasm genetics and diagnosis is a newly emerging immature theme of cfDNA. VOSviewer analysis of 527 articles showed the global trends in research on cfDNA in obstetrics and gynecology, for example, in terms of most influential authors, institutions, countries, journals, and five research hotspots: (1) cfDNA application in prenatal screening and prenatal diagnosis, (2) cfDNA application in assisted reproductive technology, (3) cfDNA application in pre-eclampsia, DNA methylation, etc., (4) cfDNA application in placental dysfunction and fetal growth restriction, and (5) cfDNA application in fetal chromosomal abnormalities (fetal aneuploidy). Conclusions. Comprehensive visual analysis provides information regarding authors, organizations, countries/regions, journals, research hotspots, and emerging topics in the field of cfDNA for obstetrics and gynecology research. This comprehensive study could make it easier to find a partner for project development and build a network of knowledge on this emerging topic

    Stability Monitoring and Analysis of High and Steep Slope of a Hydropower Station

    No full text
    Slope deformation and failure are major challenges for hydropower station engineering. Taking the left bank slope at the exit of the flood discharge tunnel of the Wudongde Hydropower Station in China as an example, the deformation mechanism of the high-steep rock slope was studied. The height of the slope is about 200 m, which is affected by slope excavation, rainfall, and atomized rain. The results of multipoint displacement meters, surface deformation monitoring, and anchoring stress meters showed that the deformation and deformation rate of the slope have increased dramatically. Through the comprehensive analysis of the slope, it is found that the overall lithology of the slope is poor, the excavation disturbance causes the redistribution of the stress in the slope, and the excavation surface is relatively steep, which provides space for the deformation of the slope rock mass. Unloading relaxation leads to a large number of new fissures in the slope rock mass. These new fissures and fault fracture zones provide convenient conditions for rainfall and atomized rain infiltration. The rainwater infiltrated along the slope surface, formed the seepage field in the slope body, and weakened the rock-soil mass parameters. Meanwhile, saturated runoff is formed on the slope, causing large deformation of the slope rock mass. However, the migration of water in the slope has a time effect, and its influence on the stability of the slope also has a time effect. It is difficult for traditional monitoring methods to monitor the resulting changes in internal sliding force of the slope. Therefore, a remote monitoring and early warning system for landslide anchor cable force was introduced to monitor the slope stability changes caused by the impact of water flow and rainfall infiltration, which provided a reasonable and scientific reference for subsequent slope construction

    Analysis on the Settlement of Adjacent Buildings Caused by the Underpassing Construction of the Biased Tunnel

    No full text
    Through the simulation analysis of the settlement and deformation law of the surface buildings caused by the construction of the biased tunnel, the following points are obtained: (1) The Peak formula is revised, and the influence range of the biased tunnel is predicted based on the formula. (2) It is concluded that when the tunnel is biased, the position of maximum deformation caused by ground settlement is generally in a parallel area 0.5 times the buried depth from the center line of the tunnel. (3) Through the double-layer verification of simulation analysis and monitoring measurement data, prior to the construction of buildings with similar weak foundations, their foundations should be reinforced in advance. (4) In the process of this simulation, the complicated influence of water pressure on tunnel excavation was not considered, which can be further optimized in the later stage
    corecore