62 research outputs found

    Locus coeruleus noradrenergic neurons phase-lock to prefrontal and hippocampal infra-slow rhythms that synchronize to behavioral events

    Get PDF
    The locus coeruleus (LC) is the primary source of noradrenergic projections to the forebrain, and, in prefrontal cortex, is implicated in decision-making and executive function. LC neurons phase-lock to cortical infra-slow wave oscillations during sleep. Such infra-slow rhythms are rarely reported in awake states, despite their interest, since they correspond to the time scale of behavior. Thus, we investigated LC neuronal synchrony with infra-slow rhythms in awake rats performing an attentional set-shifting task. Local field potential (LFP) oscillation cycles in prefrontal cortex and hippocampus on the order of 0.4 Hz phase-locked to task events at crucial maze locations. Indeed, successive cycles of the infra-slow rhythms showed different wavelengths, as if they are periodic oscillations that can reset phase relative to salient events. Simultaneously recorded infra-slow rhythms in prefrontal cortex and hippocampus could show different cycle durations as well, suggesting independent control. Most LC neurons (including optogenetically identified noradrenergic neurons) recorded here were phase-locked to these infra-slow rhythms, as were hippocampal and prefrontal units recorded on the LFP probes. The infra-slow oscillations also phase-modulated gamma amplitude, linking these rhythms at the time scale of behavior to those coordinating neuronal synchrony. This would provide a potential mechanism where noradrenaline, released by LC neurons in concert with the infra-slow rhythm, would facilitate synchronization or reset of these brain networks, underlying behavioral adaptation

    Segment Anything Model (SAM) for Radiation Oncology

    Full text link
    In this study, we evaluate the performance of the Segment Anything Model (SAM) model in clinical radiotherapy. We collected real clinical cases from four regions at the Mayo Clinic: prostate, lung, gastrointestinal, and head \& neck, which are typical treatment sites in radiation oncology. For each case, we selected the OARs of concern in radiotherapy planning and compared the Dice and Jaccard outcomes between clinical manual delineation, automatic segmentation using SAM's "segment anything" mode, and automatic segmentation using SAM with box prompt. Our results indicate that SAM performs better in automatic segmentation for the prostate and lung regions, while its performance in the gastrointestinal and head \& neck regions was relatively inferior. When considering the size of the organ and the clarity of its boundary, SAM displays better performance for larger organs with clear boundaries, such as the lung and liver, and worse for smaller organs with unclear boundaries, like the parotid and cochlea. These findings align with the generally accepted variations in difficulty level associated with manual delineation of different organs at different sites in clinical radiotherapy. Given that SAM, a single trained model, could handle the delineation of OARs in four regions, these results also demonstrate SAM's robust generalization capabilities in automatic segmentation for radiotherapy, i.e., achieving delineation of different radiotherapy OARs using a generic automatic segmentation model. SAM's generalization capabilities across different regions make it technically feasible to develop a generic model for automatic segmentation in radiotherapy

    Behavioral correlates of activity of optogenetically identified locus coeruleus noradrenergic neurons in rats performing T-maze tasks

    Get PDF
    Abstract The nucleusLocus Coeruleus (LC) is the major source of forebrain norepinephrine. LC is implicated in arousal, response to novelty, and cognitive functions, including decision-making and behavioral flexibility. One hypothesis is that LC activation promotes rapid shifts in cortical attentional networks following changes in environmental contingencies. Recent recordings further suggest LC is critical for mobilizing resources to deal with challenging situations. In the present study optogenetically identified LC neuronal activity was recorded in rats in a self-paced T-maze. Rats were trained on visual discrimination; then place-reward contingencies were instated. In the session where the animal shifted tasks the first time, the LC firing rate after visual cue onset increased significantly, even as the animal adhered to the previous rule. Firing rate also increased prior to crossing photodetectors that controlled stimulus onset and offset, and this was positively correlated with accelerations, consistent with a role in mobilizing effort. The results contribute to the growing evidence that the noradrenergic LC is essential for behavioral adaptation by promoting cognitive flexibility and mobilizing effort in face of changing environmental contingencies

    Real-time search-free multiple license plate recognition via likelihood estimation of saliency

    Get PDF
    In this paper, we propose a novel search-free localization method based on 3-D Bayesian saliency estimation. This method uses a new 3-D object tracking algorithm which includes: object detection, shadow detection and removal, and object recognition based on Bayesian methods. The algorithm is tested over three image datasets with different levels of complexities, and the results are compared with those of benchmark methods in terms of speed and accuracy. Unlike most search-based license-plate extraction methods, our proposed 3-D Bayesian saliency algorithm has lower execution time (less than 60 ms), more accuracy, and it is a search-free algorithm which works in noisy backgrounds

    Analysis of Frequency-Dependent Line-of-Sight Probability in 3-D Environment

    No full text

    Microstructure Evolution and In Situ Resistivity Response of 2196 Al-Li Alloy during Aging Process

    No full text
    The microstructure evolution of 2196 Al-Li alloy during aging was investigated by microhardness test, transmission electron microscope (TEM) analysis and in situ resistivity measurement. The results showed that the resistivity of the 2196 Al-Li alloy during aging rapidly decreased during the first few hours, and then gradually increased after reaching the minimum value, which is temperature−dependent. The microstructure of the alloy was dominated by the δ′ phase after aging at 160 °C for 2 h while the T1 phase could hardly be seen until it had been aged for 16 h. As the aging time went on, significant ripening appeared for the δ′ phase while typical growth could be observed for the T1 phase. The increase in the resistivity of the 2196 Al-Li alloy during aging was attributed to the stronger electron scattering capacity of the T1 precipitation and the coupling effect between the T1 and δ′ phases

    Dendrochronology-Based Normalized Difference Vegetation Index Reconstruction in the Qinling Mountains, North-Central China

    No full text
    Larix chinensis Beissn., as a native, dominant and climate-sensitive coniferous species at Mount Taibai timberline, Qinling mountains, is rarely disturbed by anthropogenic activities; thus, it is an ideal proxy for the investigation of climate change or vegetation evolution. In this study, we applied dendrochronological methods to the L. chinensis tree-ring series from Mt. Taibai and investigated the relationships between tree-ring widths and NDVI/climate factors using Pearson correlation analysis. On the basis of the remarkable positive correlations (r = 0.726, p < 0.01, n = 23) between local July normalized difference vegetation indices (NDVI) and tree-ring width indices, the regional 146-year annual maximum vegetation density was reconstructed using a regression model. The reconstructed NDVI series tracked the observed data well, as the trans-function accounted for 52.8% of observed NDVI variance during AD 1991–2013. After applying an 11-year moving average, five dense vegetation coverage periods and six sparse vegetation coverage periods were clearly presented. At a decadal scale, this reconstruction was reasonably and negatively correlated with a nearby historical-record-based dryness/wetness index (DWI), precisely verifying that local vegetation cover was principally controlled by hydrothermal variations. Spectral analysis unveiled the existence of 2–3-year, 2–4-year, 5–7-year and 7–11-year cycles, which may potentially reflect the connection between local NDVI evolution and larger-scale circulations, such as the El Niño–Southern Oscillation (ENSO) and solar activity. This study is of great significance for providing a long-term perspective on the dynamics of vegetation cover in the Qinling mountains, and could help to guide expectations of future forest variations

    Insights into the binding mechanism of polyphenols and fish myofibrillar proteins explored using multi-spectroscopic methods

    No full text
    As the most abundant protein existing in fish, myofibrillar protein (MP) is likely to hydrolyze which affects the quality of fish during preservation. Polyphenols, which are some of the most popular antioxidants and antimicrobials, have been widely used in freshwater fish preservation and storage to prevent protein degradation. However, their binding behavior and mechanism is still unclear. In this study, the binding mechanisms of two types of polyphenols (Chlorogenic acid: CGA; Quercetin: QUE) and MP extracted from grass carp were investigated through multi-spectroscopic methods. Different spectroscopic methods (fluorescence spectroscopy and synchronous fluorescence spectroscopy) were used to explore the interaction modes between polyphenols and fish extracted MP. In addition, circular dichroism spectroscopy was used to detect microstructure changes of MP under different preservation approaches. Results showed that nanocomposites were generated when MP interacted with either CGA or QUE. The addition of CGA did not affect the α-helix content of MP, whereas QUE diffused the β-turns of myofibrillar proteins and promoted the formation of α-helices. At the same time, the fluorescence quenching effect of CGA/QUE on MP was static quenching, and the binding constants, number of binding sites and corresponding thermodynamic parameters of MP were calculated. It was concluded that the binding of CGA to MP depends on Van der Waals forces and hydrogen bonds, while QUE binds to MPs on the basis of electrostatic interactions. In addition, the fluorescence quenching of MPs with CGA is related to tryptophan and tyrosine residues, while the fluorescence quenching effect of QUE on MPs is related only to tryptophan residues

    p300-Catalyzed Lysine Crotonylation Promotes the Proliferation, Invasion, and Migration of HeLa Cells via Heterogeneous Nuclear Ribonucleoprotein A1

    No full text
    Cervical carcinoma is the third most common cause of cancer in women with a significant challenge in clinical treatment. Human papillomavirus (HPV) is strongly responsible for cervical carcinoma. Here, we show the increased expression level of heterogeneous nuclear ribonucleoprotein A1 (HNRNPA1) in HPV-associated cervical cancer cells including HeLa, Caski, and SiHa cells, especially in HeLa cells. We provide the evidence that the expression of HNRNPA1 is closely related to HeLa cell proliferation, invasion, and migration. Emerging evidence show that histone modifications account for gene expression. Moreover, our results indicate that HNRNPA1 could be regulated by p300 through p300-mediated lysine crotonylation. Inhibition of p300 downregulated both the lysine crotonylation level and the HNRNPA1 expression. And p300-mediated lysine crotonylation participates in the regulation of HNRNPA1 on HeLa cell proliferation, invasion, and migration. Collectively, our study uncovers that p300-mediated lysine crotonylation enhances expression of HNRNPA1 to promote the proliferation, invasion, and migration of HeLa cells

    Some maternal lineages of domestic horses may have origins in East Asia revealed with further evidence of mitochondrial genomes and HVR-1 sequences

    No full text
    Objectives There are large populations of indigenous horse (Equus caballus) in China and some other parts of East Asia. However, their matrilineal genetic diversity and origin remained poorly understood. Using a combination of mitochondrial DNA (mtDNA) and hypervariable region (HVR-1) sequences, we aim to investigate the origin of matrilineal inheritance in these domestic horses. Methods To investigate patterns of matrilineal inheritance in domestic horses, we conducted a phylogenetic study using 31 de novo mtDNA genomes together with 317 others from the GenBank. In terms of the updated phylogeny, a total of 5,180 horse mitochondrial HVR-1 sequences were analyzed. Results Eightteen haplogroups (Aw-Rw) were uncovered from the analysis of the whole mitochondrial genomes. Most of which have a divergence time before the earliest domestication of wild horses (about 5,800 years ago) and during the Upper Paleolithic (35–10 KYA). The distribution of some haplogroups shows geographic patterns. The Lw haplogroup contained a significantly higher proportion of European horses than the horses from other regions, while haplogroups Jw, Rw, and some maternal lineages of Cw, have a higher frequency in the horses from East Asia. The 5,180 sequences of horse mitochondrial HVR-1 form nine major haplogroups (A-I). We revealed a corresponding relationship between the haplotypes of HVR-1 and those of whole mitochondrial DNA sequences. The data of the HVR-1 sequences also suggests that Jw, Rw, and some haplotypes of Cw may have originated in East Asia while Lw probably formed in Europe. Conclusions Our study supports the hypothesis of the multiple origins of the maternal lineage of domestic horses and some maternal lineages of domestic horses may have originated from East Asia
    corecore