181 research outputs found

    Automatic depression scale prediction using facial expression dynamics and regression

    Get PDF
    Depression is a state of low mood and aversion to activity that can affect a person's thoughts, behaviour, feelings and sense of well-being. In such a low mood, both the facial expression and voice appear different from the ones in normal states. In this paper, an automatic system is proposed to predict the scales of Beck Depression Inventory from naturalistic facial expression of the patients with depression. Firstly, features are extracted from corresponding video and audio signals to represent characteristics of facial and vocal expression under depression. Secondly, dynamic features generation method is proposed in the extracted video feature space based on the idea of Motion History Histogram (MHH) for 2-D video motion extraction. Thirdly, Partial Least Squares (PLS) and Linear regression are applied to learn the relationship between the dynamic features and depression scales using training data, and then to predict the depression scale for unseen ones. Finally, decision level fusion was done for combining predictions from both video and audio modalities. The proposed approach is evaluated on the AVEC2014 dataset and the experimental results demonstrate its effectiveness.The work by Asim Jan was supported by School of Engineering & Design/Thomas Gerald Gray PGR Scholarship. The work by Hongying Meng and Saeed Turabzadeh was partially funded by the award of the Brunel Research Initiative and Enterprise Fund (BRIEF). The work by Yona Falinie Binti Abd Gaus was supported by Majlis Amanah Rakyat (MARA) Scholarship

    Molecular genetic analysis of three children with CHDFIDD and literature review

    Get PDF
    Objective To analyze the clinical and genetic characteristics of three children with congenital heart defects, dysmorphic facial features and intellectual developmental disorders(CHDFIDD). Methods Three children presenting with CHDFIDD were enrolled. Genomic DNA was extracted from peripheral venous blood of the children and their parents. Whole-exome sequencing(WES) was performed using chip-capture high-throughput sequencing technology. Suspected causative mutations were verified by Sanger sequencing and bioinformatic analysis. Using “CDK13 gene” and “CDK13-related diseases” as search terms, literatures of CNKI and Wanfang database were retrieved until February 2024. Using “CDK13”, “CDK13-related disorder” and “CHDFIDD” as search terms, literatures from the establishment of PubMed database untio February 2024 was retrieved, and the relevant literature was reviewed. Results WES revealed heterozygous variants of the CDK13 gene in three children, including c.2572 C>T (p.Leu858Phe), c.2579 G>A (p.Arg860Gln), and c.2602C>T (p.Arg868Trp), which were verified as de novo variants by Sanger sequencing.Combined with the clinical phenotype, all 3 children were diagnosed with CHDFIDD. However, the possibility that one of the affected children’s parents was a germline chimera for the mutation could not be excluded. According to the ACMG guidelines, all three mutation sites were classified as likely pathogenic. A total of 14 studies consisting of 108 cases were retrieved. Among them, c.2572C>T has not been reported. Conclusions The de novo variants of the CDK13 gene may be the genetic cause of developmental delay/intellectual disability in these three children. The findings in the present study expand the spectrum of CDK13 gene mutations, providing reference for the diagnosis of CHDFIDD

    Comparative study of pancreatic vessels and mesopancreas of rhesus monkeys and humans

    Get PDF
    IntroductionWith the introduction of the concept of mesopancreas defining the perineural structures that includes neurovascular bundle and lymph nodes extending from the posterior surface of the pancreatic head to behind the mesenteric vessels,Total Mesopancreas Excision (TMpE) based on this theory has facilitated the development of pancreatic cancer surgery in clinical practice in recent years. However, the existence of so called mesopancreas in the human body is still in debate and the comparative study of mesopancreas of rhesus monkey and human have not been well investigated.PurposeThe aim of our study is to compare the pancreatic vessels and fascia of human and rhesus monkeys in anatomical and embryological perspectives and to support the utilization of rhesus monkey as animal model.MethodsIn this study, 20 rhesus monkey cadavers were dissected and their mesopancreas location, relationships and arterial distribution were analyzed. We compared the location and developmental patterns of mesopancreas in macaques and humans.ResultsThe results showed that the distribution of pancreatic arteries in rhesus monkeys was the same as that in humans, which is consistent with phylogenetic similarities. However, the morphological features of the mesopancreas and greater omentum is anatomically different from that of humans, including (1) the greater omentum is not connected to the transverse colon in monkeys. (2) The presence of the dorsal mesopancreas of the rhesus monkey suggests that it be an intraperitoneal organ. Comparative anatomical studies of mesopancreas and arteries in macaques and humans showed characteristic patterns of mesopancreas and similarities in pancreatic artery development in nonhuman primates, consistent with phylogenetic differentiation

    Bacteroides fragilis Prevents Clostridium difficile Infection in a Mouse Model by Restoring Gut Barrier and Microbiome Regulation

    Get PDF
    Clostridium difficile is currently the leading cause of nosocomial infection. Antibiotics remain the first-line therapy for C. difficile-associated diseases (CDAD), despite the risks of resistance promotion and further gut microbiota perturbation. Notably, the abundance of Bacteroides fragilis was reported to be significantly decreased in CDAD patients. This study aimed to clarify the prophylactic effects of B. fragilis strain ZY-312 in a mouse model of C. difficile infection (CDI). The CDI mouse model was successfully created using C. difficile strain VPI 10463 spores, as confirmed by lethal diarrhea (12.5% survival rate), serious gut barrier disruption, and microbiota disruption. CDI model mice prophylactically treated with B. fragilis exhibited significantly higher survival rates (100% in low dosage group, 87.5% in high dosage group) and improved clinical manifestations. Histopathological analysis of colon and cecum tissue samples revealed an intact gut barrier with strong ZO-1 and Muc-2 expression. The bacterial diversity and relative abundance of gut microbiota were significantly improved. Interestingly, the relative abundance of Akkermansia muciniphila was positively correlated with B. fragilis treatment. In vitro experiments showed that B. fragilis inhibited C. difficile adherence, and attenuated the decrease in CDI-induced transepithelial electrical resistance, ZO-1 and MUC-2 loss, and apoptosis, suggesting that B. fragilis protected against CDI possibly by resisting pathogen colonization and improving gut barrier integrity and functions. In summary, B. fragilis exerted protective effects on a CDI mouse model by modulating gut microbiota and alleviating barrier destruction, thereby relieving epithelial stress and pathogenic colitis triggered by C. difficile. This study provides an alternative preventative measure for CDI and lays the foundations for further investigations of the relationships among opportunistic pathogens, commensal microbiota, and the gut barrier

    Anxiety, depression, and insomnia among nurses during the full liberalization of COVID-19: a multicenter cross-sectional analysis of the high-income region in China

    Get PDF
    IntroductionFrontline nurses fighting against the epidemic were under great psychological stress. However, there is a lack of studies assessing the prevalence rates of anxiety, depression, and insomnia among frontline nurses after the full liberalization of COVID-19 in China. This study demonstrates the impact of the full liberalization of COVID-19 on the psychological issues and the prevalence rate and associated factors of depressive symptoms, anxiety, and insomnia among frontline nurses.MethodsA total of 1766 frontline nurses completed a self-reported online questionnaire by convenience sampling. The survey included six main sections: the 9-item Patient Health Questionnaire (PHQ-9), the 7-item Generalized Anxiety Disorder (GAD-7), the 7-item Insomnia Severity Index (ISI), the 10-item Perceived Stress Scale (PSS-10), sociodemographic information, and work information. Multiple logistic regression analyses were applied to identify the potential significantly associated factors for psychological issues. The study methods were compliant with the STROBE checklist.Results90.83% of frontline nurses were infected with COVID-19, and 33.64% had to work while infected COVID-19. The overall prevalence of depressive symptoms, anxiety and insomnia among frontline nurses was 69.20%, 62.51%, and 76.78%, respectively. Multiple logistic analyses revealed that job satisfaction, attitude toward the current pandemic management, and perceived stress were associated with depressive symptoms, anxiety, and insomnia.ConclusionsThis study highlighted that frontline nurses were suffering from varying degrees of depressive symptoms, anxiety, and insomnia during full liberalization of COVID-19. Early detection of mental health issues and preventive and promotive interventions should be implemented according to the associated factors to prevent a more serious psychological impact on frontline nurses

    Discovering Dysfunction of Multiple MicroRNAs Cooperation in Disease by a Conserved MicroRNA Co-Expression Network

    Get PDF
    MicroRNAs, a new class of key regulators of gene expression, have been shown to be involved in diverse biological processes and linked to many human diseases. To elucidate miRNA function from a global perspective, we constructed a conserved miRNA co-expression network by integrating multiple human and mouse miRNA expression data. We found that these conserved co-expressed miRNA pairs tend to reside in close genomic proximity, belong to common families, share common transcription factors, and regulate common biological processes by targeting common components of those processes based on miRNA targets and miRNA knockout/transfection expression data, suggesting their strong functional associations. We also identified several co-expressed miRNA sub-networks. Our analysis reveals that many miRNAs in the same sub-network are associated with the same diseases. By mapping known disease miRNAs to the network, we identified three cancer-related miRNA sub-networks. Functional analyses based on targets and miRNA knockout/transfection data consistently show that these sub-networks are significantly involved in cancer-related biological processes, such as apoptosis and cell cycle. Our results imply that multiple co-expressed miRNAs can cooperatively regulate a given biological process by targeting common components of that process, and the pathogenesis of disease may be associated with the abnormality of multiple functionally cooperative miRNAs rather than individual miRNAs. In addition, many of these co-expression relationships provide strong evidence for the involvement of new miRNAs in important biological processes, such as apoptosis, differentiation and cell cycle, indicating their potential disease links

    Population Genetic Analysis of Plasmodium falciparum Parasites Using a Customized Illumina GoldenGate Genotyping Assay

    Get PDF
    The diversity in the Plasmodium falciparum genome can be used to explore parasite population dynamics, with practical applications to malaria control. The ability to identify the geographic origin and trace the migratory patterns of parasites with clinically important phenotypes such as drug resistance is particularly relevant. With increasing single-nucleotide polymorphism (SNP) discovery from ongoing Plasmodium genome sequencing projects, a demand for high SNP and sample throughput genotyping platforms for large-scale population genetic studies is required. Low parasitaemias and multiple clone infections present a number of challenges to genotyping P. falciparum. We addressed some of these issues using a custom 384-SNP Illumina GoldenGate assay on P. falciparum DNA from laboratory clones (long-term cultured adapted parasite clones), short-term cultured parasite isolates and clinical (non-cultured isolates) samples from East and West Africa, Southeast Asia and Oceania. Eighty percent of the SNPs (n = 306) produced reliable genotype calls on samples containing as little as 2 ng of total genomic DNA and on whole genome amplified DNA. Analysis of artificial mixtures of laboratory clones demonstrated high genotype calling specificity and moderate sensitivity to call minor frequency alleles. Clear resolution of geographically distinct populations was demonstrated using Principal Components Analysis (PCA), and global patterns of population genetic diversity were consistent with previous reports. These results validate the utility of the platform in performing population genetic studies of P. falciparum
    corecore