357 research outputs found

    Enhancement of Heat-Cured Cement Paste with Tannic Acid

    Get PDF
    The Improvement of Cement-Based Materials\u27 Performance by Natural Organic Compounds Can Greatly Promote the Green and Sustainable Development of the Construction Industry. However, Such Compounds Are Not Widely Used Yet Because of their Retarding Effect on Cement. in This Study, the Retardation Effect of Tannic Acid (TA, a Well-Known Retarding Compound) is overcome and the Enhancing Effect is Achieved by Adding Less Than 0.1% Content and Curing Samples in Thermal Regime. Then the Mechanism of TA Enhancing Heat-Cured Cement Pastes is Studied Systematically. Mechanical Properties Results Suggest that Addition of 0.025% TA Can Reduce the Compressive and Flexural Strengths of Cement Pastes by Up to 3.4% and 17.1% under Normal Curing Regime at 3 Days, But Enhance These Two Strengths by More Than 11.4% and 34.6% after Thermal Curing, Respectively. XRD Patterns and TGA Analysis Indicate that, under Thermal Curing Regime, 0.025% TA Can Improve the Hydration Degree of Cement Where the Bound Water Content is Increased by 21.4%. SEM Observations and MIP Results Show that TA Can Compact the Microstructure and the Porosity is Decreased by More Than 7.0%. Furthermore, FTIR Spectrums Prove that TA Can Bond with Hydration Products. Molecular Dynamics Simulation Demonstrates that TA Cross-Links with Calcium Silicate Hydrates (C–S–H) through Ionic and Hydrogen Bonds, Which Could Increase the Tensile Strength by 12.5% and the Ultimate Strain by 100%

    Wavelet Power and Shannon Entropy Applied to Acoustic Emission Signals for Corrosion Detection and Evaluation of Reinforced Concrete

    Get PDF
    Acoustic emission (AE) signals detected from corrosion test on a steel reinforced concrete beam subjected to the coupling effects of corrosive wet-dry cycles and static load are analyzed by power spectral density, wavelet transform, and Shannon entropy. The degradation process of the corroded reinforced concrete beam can be divided into four stages on the basis of the accumulated event number (AEN). Due to the difference of material properties, steel reinforcement and concrete matrix have distinguished AE features. The time-frequency characteristics of AE signals can reflect the microstructural degradation mechanism of steel corrosion and concrete cracking. The corrosion evaluation entails investigating the evolution of the wavelet power mathematically by Shannon entropy. The frequency-entropy clearly exhibits the relative power distribution of AE signal in a certain frequency region. With the accumulation of steel corrosion and concrete deterioration, the increment of the overall entropy integration is considerably apparent. The variation of frequency-entropy curve reveals the corrosion revolution of the reinforced concrete members under static load, which is represented by a transforming from corrosion-induced micro cracking to load-induced localized cracking

    Polarization dependent cladding modes coupling and spectral analyses of excessively tilted fiber grating

    Get PDF
    We report on the detailed analyses of mode coupling from fiber core to cladding in excessively tilted fiber gratings (ETFGs). Cladding modes responsible for the typical dual peak pairs in the transmission spectrum of ETFGs are identified with phase matching condition, which suggests two set of dual peak pairs generated from coupling to cladding modes with even and odd azimuthal order. The polarization dependence of those dual peak pairs are also investigated by calculating the coupling coefficients of cladding modes for two orthogonal polarizations. With the calculated coupling coefficients, the measured polarization dependent spectra can be reproduced numerically

    Targeting LOXL2 for cardiac interstitial fibrosis and heart failure treatment

    Get PDF
    Interstitial fibrosis plays a key role in the development and progression of heart failure. Here, we show that an enzyme that crosslinks collagen—Lysyl oxidase-like 2 (Loxl2)—is essential for interstitial fibrosis and mechanical dysfunction of pathologically stressed hearts. In mice, cardiac stress activates fibroblasts to express and secrete Loxl2 into the interstitium, triggering fibrosis, systolic and diastolic dysfunction of stressed hearts. Antibody-mediated inhibition or genetic disruption of Loxl2 greatly reduces stress-induced cardiac fibrosis and chamber dilatation, improving systolic and diastolic functions. Loxl2 stimulates cardiac fibroblasts through PI3K/AKT to produce TGF-β2, promoting fibroblast-to-myofibroblast transformation; Loxl2 also acts downstream of TGF-β2 to stimulate myofibroblast migration. In diseased human hearts, LOXL2 is upregulated in cardiac interstitium; its levels correlate with collagen crosslinking and cardiac dysfunction. LOXL2 is also elevated in the serum of heart failure (HF) patients, correlating with other HF biomarkers, suggesting a conserved LOXL2-mediated mechanism of human HF

    Low-loss 25.3km few-mode ring-core fibre for mode-division multiplexed transmission

    No full text
    We report the design, fabrication and characterisation of a few-mode ring-core fibre supporting 4 mode groups. The low loss (~0.3dB/km) and length (25.3km) are both records for a ring-core fibre

    Spatial algebraic solitons at the Dirac point in optically induced nonlinear photonic lattices

    Get PDF
    The discovery of a new type of soliton occurring in periodic systems is reported. This type of nonlinear excitation exists at a Dirac point of a photonic band structure, and features an oscillating tail that damps algebraically. Solitons in periodic systems are localized states traditionally supported by photonic bandgaps. Here, it is found that besides photonic bandgaps, a Dirac point in the band structure of triangular optical lattices can also sustain solitons. Apart from their theoretical impact within the soliton theory, they have many potential uses because such solitons are possible in both Kerr material and photorefractive crystals that possess self-focusing and self-defocusing nonlinearities. The findings enrich the soliton family and provide information for studies of nonlinear waves in many branches of physics

    Ammonia mitigation campaign with smallholder farmers improves air quality while ensuring high cereal production

    Get PDF
    Reducing cropland ammonia (NH3) emissions while improving air quality and food supply is a challenge, particularly in China with millions of smallholder farmers. We tested the effectiveness of a tailored nitrogen (N) management strategy applied to wheat-maize cropping systems in “Demonstration Squares” across Quzhou county in North China Plain. The N management techniques included optimal N rates, deep fertilizer placement and application of urease inhibitors, implemented through cooperation between government, researchers, businesses and smallholders. Compared with conventional local smallholder practice, our NH3 mitigation campaign reduced NH3 volatilization from wheat and maize by 49% and 39%, and increased N use efficiency by 28% and 40% and farmers’ profitability by 25% and 19%, respectively, with no detriment to crop yields. County-wide atmospheric NH3 and PM2.5 concentrations decreased by 40% and 8%, respectively. County-wide net benefits were estimated at $7.0 million. Our “Demonstration Square” approach demonstrates that cropland NH3 mitigation and improved air quality and farm profitability can be achieved simultaneously by coordinated actions at county level
    • …
    corecore