11 research outputs found

    Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury

    Get PDF
    Hypoxic-ischemic brain injury poses a significant threat to the neural niche within the central nervous system. In response to this pathological process, microglia, as innate immune cells in the central nervous system, undergo rapid morphological, molecular and functional changes. Here, we comprehensively review these dynamic changes in microglial response to hypoxic-ischemic brain injury under pathological conditions, including stroke, chronic intermittent hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the regulation of signaling pathways under hypoxic-ischemic brain injury and further describe the process of microenvironment remodeling and neural tissue regeneration mediated by microglia after hypoxic-ischemic injury

    Forest type affects the coupled relationships of soil C and N mineralization in the temperate forests of northern China

    No full text
    Decomposition of soil organic matter (SOM) is sensitive to vegetation and climate change. Here, we investigated the influence of changes in forest types on the mineralization of soil carbon (C) and nitrogen (N), and their temperature sensitivity (Q(10)) and coupling relationships by using a laboratory soil incubation experiments. We sampled soils from four forest types, namely, a primary Quercus liaotungensis forest (QL), Larix principis-rupprechtii plantation (LP), Pinus tabulaeformis plantation (PT), and secondary shrub forest (SS) in temperate northern China. The results showed that soil C and N mineralization differed significantly among forest types. Soil C and N mineralization were closely coupled in all plots, and C:N ratios of mineralized SOM ranged from 2.54 to 4.12. Forest type significantly influenced the Q(10) values of soil C and N mineralization. The activation energy (E(a)) of soil C and N mineralization was negatively related to the SOM quality index in all forest types. The reverse relationships suggested that the carbon quality-temperature (CQT) hypothesis was simultaneously applicable to soil C and N mineralization. Our findings show that the coupled relationships of soil C and N mineralization can be affected by vegetation change

    Effects of shear stress on vascular endothelial functions in atherosclerosis and potential therapeutic approaches

    No full text
    Different blood flow patterns in the arteries can alter the adaptive phenotype of vascular endothelial cells (ECs), thereby affecting the functions of ECs and are directly associated with the occurrence of lesions in the early stages of atherosclerosis (AS). Atherosclerotic plaques are commonly found at curved or bifurcated arteries, where the blood flow pattern is dominated by oscillating shear stress (OSS). OSS can induce ECs to transform into pro-inflammatory phenotypes, increase cellular inflammation, oxidative stress response, mitochondrial dysfunction, metabolic abnormalities and endothelial permeability, thereby promoting the progression of AS. On the other hand, the straight artery has a stable laminar shear stress (LSS), which promotes the transformation of ECs into an anti-inflammatory phenotype, improves endothelial cell function, thereby inhibits atherosclerotic progression. ECs have the ability to actively sense, integrate, and convert mechanical stimuli by shear stress into biochemical signals that further induces intracellular changes (such as the opening and closing of ion channels, activation and transcription of signaling pathways). Here we not only outline the relationship between functions of vascular ECs and different forms of fluid shear stress in AS, but also aim to provide new solutions for potential atherosclerotic therapies targeting intracellular mechanical transductions

    A 2,3-dialkoxynaphthalene-based naphthocage

    No full text
    A 2,3-dialkoxynaphthalene-based naphthocage has been synthesized. This naphthocage prefers to bind small organic cations with its low-symmetry conformation, which is in contrast to 2,6-dialkoxynaphthalene-based naphthocages. Self-sorting of these two naphthocages with two structurally similar guests tetramethylammonium and tetraethylammonium was achieved as well.peerReviewe

    Inflammation‐Targeted Nanomedicines Alleviate Oxidative Stress and Reprogram Macrophages Polarization for Myocardial Infarction Treatment

    No full text
    Abstract Myocardial infarction (MI) is a critical global health challenge, with current treatments limited by the complex MI microenvironment, particularly the excessive oxidative stress and intense inflammatory responses that exacerbate cardiac dysfunction and MI progression. Herein, a mannan‐based nanomedicine, Que@MOF/Man, is developed to target the inflammatory infarcted heart and deliver the antioxidative and anti‐inflammatory agent quercetin (Que), thereby facilitating a beneficial myocardial microenvironment for cardiac repair. The presence of mannan on the nanoparticle surface enables selective internalization by macrophages rather than cardiomyocytes. Que@MOF/Man effectively neutralizes reactive oxygen species in macrophages to reduce oxidative stress and promote their differentiation into a reparative phenotype, reconciling the inflammatory response and enhancing cardiomyocyte survival through intercellular communication. Owing to the recruitment of macrophages into inflamed myocardium post‐MI, in vivo, administration of Que@MOF/Man in MI rats revealed the specific distribution into the injured myocardium compared to free Que. Furthermore, Que@MOF/Man exhibited favorable results in resolving inflammation and protecting cardiomyocytes, thereby preventing further myocardial remodeling and improving cardiac function in MI rats. These findings collectively validate the rational design of an inflammation‐targeted delivery strategy to mitigate oxidative stress and modulate the inflammation response in the injured heart, presenting a therapeutic avenue for MI treatment

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)

    No full text
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)

    No full text
    corecore