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Hypoxic-ischemic brain injury poses a significant threat to the neural niche

within the central nervous system. In response to this pathological process,

microglia, as innate immune cells in the central nervous system, undergo rapid

morphological, molecular and functional changes. Here, we comprehensively

review these dynamic changes in microglial response to hypoxic-ischemic brain

injury under pathological conditions, including stroke, chronic intermittent

hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the

regulation of signaling pathways under hypoxic-ischemic brain injury and

further describe the process of microenvironment remodeling and neural

tissue regeneration mediated by microglia after hypoxic-ischemic injury.
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1 Introduction

The brain, as the command center of the body, relies on a constant supply of blood and

oxygen to maintain its proper function. Cerebral blood flow accounts for roughly 15-20%

of cardiac output, while brain oxygen consumption represents around 20% of the total of

the body (1). Therefore, the brain is more sensitive to changes in blood and oxygen than

other organs. Hypoxic-ischemic injury in the brain may seriously affect central nervous

system (CNS) niche homeostasis. Numerous studies have demonstrated that hypoxic-

ischemic brain injury leads to pathological processes such as energy failure, oxidative stress,

blood-brain barrier disruption, microglia activation inflammation, neuro-excitotoxicity,

and endothelial damage (2–5). As the immune cells that reside in the brain, microglia

patrol the brain parenchyma to maintain CNS niche homeostasis via phagocytosis and

interaction with many other cells, such as neurons, astrocytes, oligodendrocytes, and

endothelial cells (6–8). When brain tissue homeostasis is disrupted, microglia undergo a

dynamic process to adjust their morphologies, phenotypes, and functions to respond

promptly to different stimulations. This process is a response mechanism for microglia to
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adapt to environmental changes (9). Interestingly, numerous

research studies have provided evidence that there is neurogenesis

occurring in the altered environment (10–13). However, the

potential mechanisms driving this process of neurogenesis remain

unclear, which has sparked interest in understanding the role played

by microglia in this process. An increasing number of viewpoints

suggest that microglia play a beneficial role in neural regeneration

(14–16). Therefore, understanding the dynamic and molecular

changes that occur in microglia during injury is crucial for

unraveling the contribution of microglia to neural regeneration.

This review summarizes the dynamic changes of microglia in

hypoxic-ischemic brain injury and primarily focuses on the

specific responses, transformations, and pathway activations of

microglia in this condition. The process of microenvironment

remodeling and neural tissue regeneration after hypoxic-ischemic

brain injury mediated by microglia cells was further described.
2 Microglia dynamic response and
phenotype heterogeneity in hypoxic-
ischemic related diseases

The microglia show great differences in morphology.

Traditionally there are “ramified microglia” (have highly ramified

processes and plays a certain function under normal physiological

conditions), “reactive microglia” (have a rounded cell body with a

few ramified processes) and “ameboid microglia” (display a

characteristic amoeboid-shaped cell body extending one or two

unramified processes or are completely devoid of processes) (17).

Specifically, in the microenvironment of the steady-state, microglia

have more ramified processes, and this “ramified microglia”

monitors the dynamic balance of the microenvironment in real

time (18). When the balance of the microenvironment is

disturbed, microglia transform into “reactive microglia”, which

are morphologically more rounded cell bodies with fewer and

shorter ramified processes that respond to changes in the

microenvironment and make immune responses (19, 20). With

increased cell division and self-proliferation, reactive microglia

change their morphological and molecular characteristics, and

these microglia adopt amoeba shape and exhibit enhanced

mobility, which allows them to efficiently migrate to areas of

injury or disease within the CNS (21, 22), which is critical for

their immune function and ability to clear cell debris (23). However,

it is not comprehensive to judge the state and related functions of

microglia only from morphology. For example, in adult

hippocampal neurogenesis, ramified microglia can also perform

phagocytosis (24).

Microglia exhibit various phenotypes in response to

environmental stimuli, which are identified based on the types of

factors they secrete and their specific physiological characteristics,

resulting in substantial heterogeneity among these cells. The earlier

research commonly categorized polarized microglia into M1 and

M2 subtypes (25–27). M1 phenotypes are known as “classical”

activation, which is typically induced by interferon-g (IFN-g) and
lipopolysaccharide (LPS). M1 phenotypes have pro-inflammatory

activity. They secrete various immunoreactive substances such as
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tumor necrosis factor-a (TNF-a), interleukin 6 (IL-6), and NO to

neutralize viruses or bacteria, and stimulate the inflammatory

response of other cells, thus causing specific immune resistance

(26). The M2 “alternative” phenotype is an active anti-

inflammatory state, which appears to regulate immunity. Its

primary function is maintaining a stable niche balance and

preventing excessive inflammation caused by the specific immune

response (28). Based on the subtype classification of M2, Ma et al.

further divided it into M2a, M2b, and M2c subtypes (29). M2a

microglia are induced by IL-4 or IL-13 stimulation, also known as

“alternative activated microglia”, and they play a key role in

suppressing inflammation and facilitating tissue repair processes.

Notably, in M2a microglia, the expression levels of Fizz1, Arg1, and

Ym1 mRNA are upregulated (30). After traumatic spinal cord

injury, M2a microglia support the intrinsic repair and

recruitment of peripheral myeloid cells and promote recovery

after injury (31). M2b phenotype is “transitionally activated

microglia” that is induced by most pro-inflammatory stimuli LPS,

IL-1b, TNF-a, or IFNg and M2b phenotype is associated with

immune regulation (32). M2c subtype is microglia exposed to IL-10

or transforming growth factor-b (TGF-b) or glucocorticoid induces

a specific phenotype in microglia, also known as “acquired

deactivated microglia”. The signature of this phenotype is

involved in neuroprotection and releases a number of anti-

inflammatory cytokines with high expression of IL-4Ra, CCR2,
SOCS3, CD150 and CD206 (33). Meanwhile, the study has found

that the response phenotypes of microglia are dynamic, and some of

response phenotypes can be reversed (34). While some studies have

discovered that microglia can improve symptoms when induced

into an M2 phenotype, M2 does not wholly represent the beneficial

neuroprotective subtype. The polarity of M1 and M2 microglia was

defined in the pre-genomic era based on the expression of some

markers and the function of the cell. However, the definition fails to

detail the dynamic transcription of microglia during their response

to stimuli (35). With the development of genome-wide

transcriptomics and epigenomics as well as two-photon imaging

techniques, microglia cells have been classified into more subtypes

with different expression lineages (36, 37). For example, the Trem-

2-dependent disease-associated microglia (DAMS) subpopulation

discovered by karen-shaul et al. in a mouse model of Alzheimer’s

disease (AD) via single-cell RNA-seq and smFISH (38).

Interestingly, microglia of this subtype can be polarized in two

steps, allowing them to acquire a protective phenotype in the

context of neurodegeneration (39, 40). Similarly, the single-cell

RNA-seq technique has been used to reveal the diverse

transcriptional landscape of microglia in stroke, which is divided

into more subtypes (41). As emphasized by leading scientists in the

field, the states of microglia are intricately linked to the surrounding

microenvironment. Microglial behavior is far from static due to

their sophisticated regulatory mechanisms. Attempts to classify

microglial subtypes unilaterally proved to be imperfect. To

comprehensively define microglial states, one must consider their

specific contexts across various dimensions (42). It is important to

acknowledge that the category of microglia into M1 and M2

subtypes is not perfect. Microglia can exhibit a range of activation

states beyond the M1 and M2 categories, and these states can
frontiersin.org

https://doi.org/10.3389/fimmu.2023.1320271
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Quan and Zhang 10.3389/fimmu.2023.1320271
dynamically transform and coordinate to play distinct roles in

response to various stimuli. Overemphasizing the M1 and M2

categories may oversimplify the complexity of microglial

activation and overlook the molecular and functional dynamics

involved. Especially in diseases related to hypoxic-ischemic injury,

the response of microglia is a dynamic process that is influenced by

factors such as the duration and severity of hypoxia ischemia within

the CNS (43–45). Understanding the diverse transcriptional

landscape and the dynamic changes of microglia subtypes in

hypoxic-ischemic injury is crucial for developing effective

therapeutic strategies. In the following, we describe microglia

dynamic response and phenotype heterogeneity under three

typical hypoxic-ischemic brain diseases, including stroke, chronic

intermittent hypoxia (CIH), and neonatal hypoxic-ischemic brain

injury (NHIBI).
2.1 Stroke

Stroke is the second most common cause of death and the

leading cause of disability worldwide. A stroke can cut off the blood

supply to brain areas, leading to death or permanent neurological

impairment (46). When the blood supply is disrupted, brain cells

such as neurons, glial cells, and endothelial cells are also deprived of

oxygen and energy (47–49). These cells may have undergone

complex metabolic pathway changes, leading to the interaction of

multiple signal transduction pathways and the inhibition of

oxidative phosphorylation and ATP (Adenosine triphosphate)

synthesis processes (46). During the complex pathophysiological

process, irreversible damage was inflicted upon the brain. Microglia

respond rapidly as niche homeostasis monitors (50). Microglia

respond differentially during different stages of stroke.

During the acute phase of ischemic anoxic stroke, neurons in

the infarct core region suffer from oxygen-glucose deprivation.

Microglia respond rapidly to acute stroke stimulation (51).

Interestingly, Guo et al. investigated microglial diversity and

functional variations during the early stage of stroke by analyzing

microglia collected 24 hours after stroke induction using the Middle

cerebral artery occlusion (MCAO) model. They identified 14

subclusters of microglia and found that certain subclusters

exhibited distinct functional differences in their early response to

stroke. In these subclusters, genes related to phagocytosis (Id2,

Cd83, Gadd45b, Ccl4, Rcan1) and inflammatory response (TNF-a,
IL-6, IL-2) were upregulated (45). Additionally, the expression of

inflammatory response related genes, such as iNOS, Cd11b, Cd16,

Cd32 and Cd86, were all up-regulated (52). It has also been found

that a distinct group of microglial cells associated with stroke

injuries are significantly more abundant during this period and

may play a protective role in ischemic wounds. These microglia

exhibit significantly increased expression levels of SPP1, Itga5, Cd63

and Ftn1 (53). These findings suggest that within the first 24 hours

after stroke, microglial function mainly manifested in

inflammatory response.

During the sub-acute phase of stroke, there is a transition in the

phenotypic characteristics of microglia from a pro-inflammatory

state to an anti-inflammatory state. Specifically, microglia undergo
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significant proliferation during the subacute phase (54). Deng et al.

showed that the microglia are more prone to anti-inflammatory

predominance on day 3 and day 14 after hypoxic-ischemic stroke.

They compared the 3-month and 12-month samples and found that

the overall microglia activation was more significant in the younger

samples, including microglia activation related Gpnmb, Lgals3 and

proliferation-related Mki13 gene up-regulation (55). Shi et al. found

that genes related to inflammatory response (Cspg4, Cst7, Chst2,

Cxcl10), chemokines (Ccl2, Ccl3, Ccl4, Ccl6, Ccl8, Ccl12, Ccl10,

Ccl16), and neural repair (SPP1, Cspg4, Gpnmb) were up-regulated

in microglia subtypes during this period. Additionally, microglia

from aged mice showed significantly reduced migration and

intercellular interaction when compared to polarized microglia

from young mice (56). In summary, during the sub-acute phase

of stroke, microglia exhibit a shift towards anti-inflammatory

predominance, accompanied by increased proliferation and

specific gene expression patterns related to inflammation,

chemokines, and neural repair.

During the chronic phase of stroke, the subtypes of microglia

are mainly involved in neurovascular repair and brain tissue

remodeling, and play a role in neural protection. For example, the

significant changes in microglial gene expression levels occur such

as up-regulation of SPP1, Cst7, Lgals3bp, Lpl and Igfbp5. Microglia

in aged samples treated with MCAO exhibited a significant down-

regulation of functions associated with cell motility, inflammatory

response, cell viability, and cell homeostasis, as compared to their

younger counterparts treated with MCAO (57). In summary, these

studies provide additional insight into the transcriptional changes

of polarized microglia in stroke and their corresponding functions.

It is important to note that the secretion of inflammatory and

regulatory factors by polarized microglia plays a crucial role in the

regulation of the CNS niche. Nonetheless, the precise regulatory

mechanisms of these factors are still unknown, emphasizing the

need for further research.
2.2 Chronic intermittent hypoxia

CIH is a condition of intermittent apnea of breathing that

usually occurs during sleep. CIH has been linked to various health

problems, including cardiovascular disease (58), cognitive

impairment (59), and oxidative stress (60). CIH can cause

neuronal damage in the CNS, which induces a response from

microglia cells in the brain. For example, CIH can activate

microglia, increasing the production of pro-inflammatory

cytokines and other factors contributing to neuroinflammation

(61). Meanwhile, excessive neuroinflammation caused by

microglia activated after CIH can negatively affect brain function

(62). After CIH, a significant increase in microglial cell density was

observed in the dorsal region of the hippocampus, regardless of age

differences (63). The CIH induced the majority of microglia to

differentiate into pro-inflammatory phenotypes, leading to

upregulated expression of inflammatory cytokines IL-6, IL-1b,
and TNF-a. When the pro-inflammatory and anti-inflammatory

subtypes of microglia are appropriately regulated, it can alleviate

CIH-induced brain injury (64, 65). To summarize, while these
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findings have revealed alterations in the inflammatory cytokines of

microglia in CIH, a more comprehensive analysis of the

transcription and protein profiles of polarized microglia in this

disease model is still lacking. Therefore, relying solely on indicators

of inflammatory cytokines makes it challenging to understand the

precise role of microglia in such diseases.
2.3 Neonatal hypoxic-ischemic brain injury

The NHIBI is a significant cause of neonatal morbidity and

mortality, leading to long-term neurological deficits (66). In recent

years, research has focused on the roles of microglia in the

pathogenesis of NHIBI (67, 68). Following NHIBI, inflammation-

sensitized reactive microglia significantly up-regulate the expression

of genes related to pro-inflammatory molecules, such as iNOS, IL-

1b, and IL-6 (69). Similarly, Bernis et al. found that microglia, as

early vital mediators of the inflammatory response, polarize towards

the predominant pro-inflammatory phenotype shortly after NHIBI

(70). The NHIBI leads to a profound activation and proliferation of

microglia and strongly induces miR-210 upregulation in activated

microglia. Intrinsically, miR-210 can promote the activation of

microglia towards a pro-inflammatory phenotype, thereby

enhancing the expression of related proinflammatory cytokines

(71). Microglia have also been found to induce NLRP-3/caspase-

1/GSDMD axis-mediated canonical pyroptosis in NHIBI (72).

Inhibition of the colony-stimulating factor 1 receptor (CSF1R),

which is crucial for microglial survival, can effectively regulate the

inflammatory response of microglia, alleviating excessive

neuroinflammation and brain injury resulting from acute cerebral

hypoxic-ischemia (73). However, microglia in NHIBI do not exhibit

only one response trend. For example, microglia transformed an

inflammatory, amoeboid phenotype to a restorative, anti-

inflammatory phenotype within 24 to 48 hours of treating

extracellular vesicles in brain tissue after the NHIBI (74). Notably,

the interactions among different subtypes of microglia following

NHIBI appear to be a complex, time-dependent continuum

involving early pro-inflammatory and later anti-inflammatory

subcluster responses (75). The balance between microglial

activation and neuroprotection is crucial in determining the

outcome of NHIBI.

In summary, stroke, CIH, and NHIBI reveal subpopulation

transformation and functions of microglia at different levels of

injury and stages (Table 1). Interestingly, the inflammatory

response of microglia was weaker in older samples of hypoxic-

ischemic brain injury. This may be related to the accumulation of

chronic inflammation in the body caused by aging. With the

increase of age, the body has been exposed to a chronic

inflammatory environment for an extended period and has

developed a certain tolerance, which can result in a weakened

inflammatory response (76). For example, some studies provide

evidence that there are age-specific immune differences present in

the brain (77, 78). In conclusion, reactive microglial response is

dependent on the degree of injury and the stage of the

CNS development.
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3 Signaling pathways regulating
microglial response in hypoxic-
ischemic injury

Microglia mediated neuroinflammation is a complex process. In

particular, multiple signaling pathways and transcription factors

regulate microglia responses in hypoxic-ischemic injury, including

MAPK/NF-kB, JAK2/STAT3, mTOR, CSF1/CSF1R, and PPAR-g
related pathways.
3.1 MAPK/NF-kB

The activation of nuclear factor kappa-B (NF-kB) in microglia

plays a major role in the pathogenesis of hypoxic-ischemic brain

injury. NF-kB, as an inflammatory factor, seems to be involved in

the immune response of microglia cells under inflammatory

conditions. The overactivation of NF-kB is believed to be a major

cause of brain injury, and prophylactic inhibition of NF-kB
provides significant neuroprotection against inflammation (79,

80). In microglia, activation of NF-kB transcription is regulated

by the SUMOylation and de-SUMOylation of NEMO mediated by

SENP1 (81). The mitogen-activated protein kinase (MAPK)

pathway is also closely related to the NF-kB pathway. When

microglia cells are in oxygen-glucose deprivation, reactive oxygen

species (ROS) are produced to activate p38-MAPK/NF-kB pathway

signaling (82). Notably, the phosphorylation of MAPK can lead to

downstream phosphorylation of NF-kB and transcription of related

genes, which is a process that has been associated with microglia-

mediated inflammatory responses (83). Additionally, the NF-kB
subunit p65 also contributes to the level of Hif-1a mRNA and

protein expression (84). When the NF-kB/HIF-1a signaling

pathway is inhibited, hypoxia-induced microglia injury is

alleviated (85, 86). Endogenously produced hydrogen sulfide

(H2S) can also have a similar neuronal protective effect via

inhibiting iNOS, NF-kB, ERK, and p38 MAPK signaling

pathways (87). Pro-inflammatory factors such as TNF-a, IL-1,
and IL-6 are regulated by NF-kB p65 signaling (88). Interestingly,

TLR4 expression in hypoxic microglia also depends on the

production of inflammatory mediators mediated by HIF-1a/NF-
kB related pathways (89). Analgecine was found to inhibit

ischemia-induced pro-inflammatory microglial response and

promote anti-inflammatory effects via TLR4/MyD88/NF-kB
inhibition (90). In summary, up-regulated NF-kB as a pro-

inflammatory mo l ecu l e i s impor t an t fo r mic rog l i a

proinflammatory activation during in hypoxic ischemic

brain injury.
3.2 JAK2/STAT3

Signaling transducers and transcriptional activators 3 (STAT3)

are members of the STAT protein family that mediate stress-related

signaling in cells. The Janus kinase 2 (JAK2) is a member of the

intracellular non-receptor tyrosine kinases family, and it mediates
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TABLE 1 Microglial expression profiles and functions under various pathological conditions.

Diseases
Diseases
Stage

Age Group
Differential Expres-

sion Gene
Function

of Microglia
References

Stroke

Acute Phase (After
24 h-3 day)

8,9,10,12-weeks- male C57BL/
6J mice

Id2↑;Gadd45b↑; Ccl4↑;
Cd83↑; Rcan1↑

Phagocytic vesicles
(45)

TNF-a↑; IL-6, 2↑ Inflammatory response

Prdx1↑; Srxn1↑; Txn1↑; Mt1, 2↑ Resist oxidative stress

(53)SPP1↑; Fth1↑; Cd63↑; Itga5↑
Neuroprotective
and repairing

Hsp90aa1↓; Hspa1a↓; Hspa1b↓ Heat shock protein

iNOS↑; Cd11b, 16, 32, 86↑ Inflammatory response (52)

Acute Phase (After
3 day)

3-month-male spontaneously
hypertensive rats

Mki13↑; Gpnmb↑; Lgals3↑
Microglia proliferation

and activation

(55)

Cxcr4↑ COX-2↑ Inflammatory response

Fabp4,5↑ PPAR signaling

Ifna1↑; Bst2↑ Interferon response

12-month-male spontaneously
hypertensive rats

Gpnmb↑; Lgals3↑ Microglia activation

Cxcr4↓; COX-2↓ Inflammatory response

Fabp4,5↑ PPAR signaling

Ifna1↓; Bst2↓; Irf7↑ Interferon response

Sub-acute Phase
(After 5 day)

10-weeks-male C57BL/6J mice

Cspg4↑; Cst7↑; Chst2↑; Cxcl10↑ Inflammatory response

(56)

Ccl2, 3, 4, 6, 8, 12, 10, 16↑ Chemokine

Spp1↑; Cspg4↑; Gpnmb↑; Col1a1,
a2↑; Col5a1, a2↑; Col4a2↑

Neural repairing

Clec7a↑; Ptger4↑; IL-1b, 1m, 2rg↑;
Itgax↑; C5ar1↑

Cell–cell interactions

18-months-
male C57BL/6J mice

Cspg4↑; Cst7↑; Chst2↑; Cxcl10↑ Inflammatory response

Ccl6↓ Chemokine

Spp1↑; Cspg4↑; Gpnmb↑; Col1a1,
a2↑; Col5a1, a2↑; Col4a2↑

Neural repairing

Chronic Phase
(After 14 day)

3-month-male spontaneously
hypertensive rats

Fabp4,5↑ PPAR signaling

(55)

Irf7↑ Interferon response

C3,4a↑ Complement cascade

12-month-male spontaneously
hypertensive rats

Fabp4,5↑ PPAR signaling

Irf7↑ Interferon response

C3,4a↑ Complement cascade

10-weeks- male C57BL/
6J mice

Ttr↓; Enpp2↓; Hspa1b↓ lipid signaling

(57)

Adam8↑ Cell–cell interactions

Mrc1↓ Inflammatory response

Spp1↑Vegf↑; IGF-1↑
Neural repairing
and angiogenesis

Ccr2↑; Plaur↑; Tlr2↑; Axl↑;
Itgax↑

Cell recruiting

18-months-male C57BL/
6J mice

Ttr↑; Enpp2↑; Hspa1b↑ lipid signaling

Adam8↓ Cell–cell interactions

(Continued)
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signaling for cytokine production and is transmitted through the

JAK/STAT signaling pathway. The JAK/STAT pathway is activated

when cytokines such as IL-6 bind to their corresponding cell surface

receptors, triggering the activation of Janus kinases (JAKs) (91). The

JAKs then phosphorylate the receptors, which recruit downstream

signaling molecules such as STATs (92). The activated STATs

translocate to the nucleus and regulate gene expression, leading to

various cellular responses such as cell growth, differentiation, and

immune responses. In particular, in hypoxic-ischemic brain injury,

the JAK2/STAT3 pathway plays a critical role in microglia

activation and neuroinflammation (93, 94). This pathway may be

a therapeutic target for excessive neuroinflammation after hypoxic-

ischemic brain injury. For example, STAT3 activates microglia to

increase TNF-a expression, which causes reactive oxygen species

(ROS) levels in neuronal cells to increase neuronal apoptosis (95).

In hypoxic-ischemic stroke, homocysteine further enhances the

activation of STAT3 and the production of inflammatory

cytokines such as TNF-a and IL-6 in microglia (96). Conversely,

atractylenolide III reduces the production of inflammatory

cytokines such as IL-6, IL-b, and TNF-a by inhibiting JAK2/

STAT3/Drp1 pathway mediated mitochondrial fission in hypoxic-

ischemic microglia injury (97). Meanwhile, inhibiting JAK2 and

reducing STAT3 phosphorylation. Ruxolitinib was found to

suppress the expression of NLRP3 inflammation-related proteins

and multiple pro-inflammatory cytokines in the ischemic cortical

penumbral zone, as reported by (98). Interestingly, recent studies

have shown that the JAK2/STAT3 pathway induces microglia to

transform into pro-inflammatory tendencies, releasing pro-

inflammatory factors (99). Together, most evidence supports a

pro-inflammatory role for STAT3 signaling in reactive microglia.
3.3 mTOR

Mammalian target of rapamycin (mTOR) is a serine/threonine

protein kinase that acts as a key regulator of cell metabolism,

growth, and survival (100). mTOR has been shown to play

important roles in microglia response to hypoxic-ischemic injury.

The activation process of microglia is accompanied by the
Frontiers in Immunology 06
pho sphory l a t i on o f mTOR (101 , 102 ) , l e ad i ng t o

neuroinflammation (103). On the contrary, when mTOR is

inhibited, excessive neuroinflammation and neuronal death can

be effectively prevented (104). In addition, mTOR may suppress

microglial autophagy by inhibiting ULK1, therefore attenuating

neuroinflammation and its associated pathologies (105). mTOR

appears to be closely associated with the phenotypic transformation

of microglia to pro-inflammatory tendencies (106). Interestingly, in

the hypoxic-ischemic stroke rat model, the knockdown of PLXNA2

facilitates the transformation of microglia from a proinflammatory

to an anti-inflammatory phenotype, which is mediated by the

mTOR/STAT3 signaling pathway (107). PI3K/Akt acting

upstream of mTOR is also closely related to microglia activation

(108), and its suppression inhibits neuroinflammation (109). Under

in vitro hypoxia conditions, the PI3K/Akt/mTOR pathway is

activated by the hypoxic-inducible factor 1a(HIF-1a), resulting in

upregulation of iNOS expression in microglia (110). Overall, mTOR

is a critical regulator of microglial inflammatory balance, and its

dysregulation is implicated in various neurological diseases. The

essence of the issue is how to maintain a balance in mTOR

regulation during hypoxic-ischemic injury.
3.4 CSF1/CSF1R

Colony-stimulating factor 1 (CSF1) is a key cytokine that

promotes the survival, proliferation, and differentiation of

microglia (111, 112). It is produced by neurons (112) and

astrocytes (113). It binds to its receptor CSF1R (colony-

stimulating factor 1 receptor) on the surface of microglia to

activate downstream signaling pathways that regulate microglia

function (114–116). Microglia survival, proliferation, and

response rely heavily on the critical role of CSF1R. A recent study

showed that CSF1R appears to be involved in redox status-related

signaling of microglia (117), and inhibition of CSF1R by ki20227

treatment in the microglia may have a negative clinical effect

following hypoxic-ischemic stroke (118). A similar CSF1R

antagonist, Pexidartinib (PLX3397), also reduced the proliferation

of microglia, but brain injury from hypoxia seems to be alleviated
TABLE 1 Continued

Diseases
Diseases
Stage

Age Group
Differential Expres-

sion Gene
Function

of Microglia
References

Mrc1↓ Inflammatory response

Spp1↑ Neural repairing

Chronic
Intermittent Hypoxia

Lasted for 12 weeks
for CIH

BALB/c mice IL-1b, 6↑; TNF-a↑; iNOS↑ Inflammatory response (64)

Sprague-Dawley rats
IL-1b, 6↑; TLR4↑; Cox-2↑; TNF-

a↑; iNOS↑
Inflammatory response (65)

Neonatal Hypoxic-
Ischemic injury

After 6h; 24 h
9-day-both sexes C57BL/

6 mice

IL-1b, 6, 10↑; CD86↑; Fizz1↑; Arg1↑ Inflammatory response
(75)

Gal3↑ Cell–cell interactions

After 24 h
7-day-both sexes Wistar

rat pups
iNOS↑; IL-1b, 6↑; TGF-b↑; NLRP3↑ Inflammatory response (69)
↑ indicates up-regulated gene, ↓ indicates down-regulated gene.
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after PLX3397-treatment (73). The variability in results may be

attributed to the dynamic response of microglia during

inflammation. Therefore, it would be unwise to assume that

microglia are solely detrimental to the niche. Meanwhile, CSF1R

activation with recombinant human CSF1 ameliorated

neuroinflammation after HIBI via CSF1R/PLCG2/PKCϵ/CREB
signaling pathway in microglia (119). In addition, the CSF1/

AMPK pathway triggers microglia activation leading to

autophagy and promoting microglia-derived factors secretion

(120). As a cytokine targeting microglia, CSF-1 needs more basic

and clinical research to better understand how it regulates the

balance of neuroinflammation and neuroprotection.
3.5 PPAR-g

Peroxisome proliferator-activated receptor gamma (PPAR-g) is
a nuclear receptor that regulates neuroinflammatory and

neuroprotective in microglia (121, 122). PPAR-g is activated

during the anti-inflammatory response of microglia (123). The

PPAR-g related pathways are activated to regulate the dynamic

changes of pro-inflammatory and anti-inflammatory factors and

induce the response of microglia toward anti-inflammatory trends
Frontiers in Immunology 07
(124). Upregulation of PPAR-g also appears to inhibit signaling in

the NFKB pathway and regulate the expression of transcription

factors, such as Nrf2 and CREB, and their downstream pro-

inflammatory/anti-inflammatory genes (125). Interestingly,

PPAR-g is also involved in the mechanism of neuroprotective

effects in hypoxic-ischemic brain injury (126). Especially, the

PPARg /Nrf2/CREB pathways in microgl ia have been

demonstrated to inhibit oxidative stress, inflammation, and

apoptosis, thereby substantially mitigating hypoxic-ischemic brain

injury (127). Similarly, the response trend of microglia toward anti-

inflammatory subtypes induced by oxygen-glucose deprivation was

also regulated via PPARg related pathway (128). These findings

suggest that PPAR-g is important in regulating microglia activation

and function, especially the anti-inflammatory function.

In summary, the multifaceted functions of microglia in hypoxic-

ischemic injury are regulated by various signaling pathways and

transcription factors. Among these pathways, the pro-inflammatory

response of microglia is associated with the regulation mechanism of

MAPK/NF-kB, JAK2/STAT3, and mTOR, while the anti-

inflammatory response of microglia is linked to the PPAR-g
pathway. In addition, the CSF1/CSF1R pathway, which plays a vital

role in microglia survival, has also been implicated in the regulation

of microglia activation (Figure 1). Therefore, the changes of different
FIGURE 1

Molecular complexity and regulatory pathways of microglia in hypoxia ischemic brain injury. Microglia are complex regulated by various pathways in
hypoxic-ischemic brain injury, and also interact with other cells and molecules in the central nervous system to secrete various cytokines, chemokines
and neuroregulatory molecules to regulate the homeostasis of the CNS niche. Solid-lined arrows represent the mechanisms previously examined in the
literature. Dotted arrows indicate potential mediating pathways that have not been fully investigated from previous work. AMPK, Adenosine 5’-
monophosphate (AMP)-activated protein kinase; Akt, known as protein kinase B; PRKAA1, Protein Kinase AMP-Activated Catalytic Subunit Alpha 1; PKCϵ,
Protein kinases C ϵ isoforms; ULK1, Unc-51 Like Autophagy Activating Kinase 1; MAPK, Mitogen-Activated Protein Kinase; CSF1, Colony Stimulating
Factor 1; CSF1R, Colony Stimulating Factor 1 Receptor; PLCG2, Phospholipase C Gamma 2; NF-kB, Nuclear factor kappa-B; S, Small ubiquitin-like
modifier; SENP1, SUMO Specific Peptidase 1; NEMO, NF-kappa-B essential modulator; PPAR-g, Peroxisome proliferator-activated receptor gamma;
CREB, Cyclic AMP response element binding protein; Nrf2, Nuclear factor erythroid 2-related factor 2; Hif-1a, Hypoxia-inducible factor 1 alpha; TRAF6,
Tumor necrosis factor receptor-associated factor 6; MyD88, Myeloid differentiation primary response 88; ROS, Reactive oxygen species; TLR4, Toll-like
receptor 4; PI3K, Phosphatidylinositol 3-kinase; SOCS, Suppressor of cytokine signaling; JAK2, Janus kinase 2; NLRP3, NLR family pyrin domain
containing 3; STAT3, Signal transducer and activator of transcription 3; Drp1, Dynamin-related protein 1; TNF-a, Tumor necrosis factor alpha; BDNF,
Brain-derived neurotrophic factor; IL, Interleukin; iNOS, Inducible nitric oxide synthase; HO-1, Heme oxygenase 1. This figure was created by Adobe
Illustrator software.
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signaling pathways determines the molecular complexity of microglia

and their functions during hypoxic-ischemic injury.
4 Dynamic processes of microglial-
mediated remodeling and
regeneration in hypoxic-ischemic
brain injury

Despite exhibiting negative effects under specific circumstances,

there is mounting evidence to support the idea that microglia primarily

serve a protective function in hypoxic-ischemic brain injury (70, 129,
Frontiers in Immunology 08
130). Based on these studies, this section delves deeper into the impact

of microglial cell activation following a hypoxic-ischemic injury on

neural tissue remodeling and regeneration (Figure 2), which involved

in the following stages (1): Microglia-mediated glial scar formation (2).

Microglia-mediated microenvironment remodeling (3). Microglia-

mediated neural regeneration.
4.1 Microglia-mediated glial scar formation

When brain tissue is damaged, apoptotic cells release ‘find-me’

signals, attracting microglia to the site of cell death within the tissue
FIGURE 2

Microglia-mediated microenvironment remodeling and neural regeneration in hypoxic ischemic brain injury. In hypoxic-ischemic brain injury, the
CNS sustains significant damage, resulting in the apoptosis and necrosis of numerous neurons and glial cells. Microglia, which act as protectors of
the niche, play a crucial role in glia scar formation, microenvironment remodeling, and supporting the processes of neurogenesis and remyelination.
The orange cytokines represent those secreted by microglia, and the purple cytokines represent those secreted by neurons. This figure was created
by Adobe Illustrator software.
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(131). Although the factors that trigger ‘find-me’ signals may vary

depending on the specific type of cell injury or illness, in the case of

hypoxic-ischemic brain injury, it’s been found that chemotactic

signals released by necrotic neurons can attract microglia to the site

of injury rapidly (132). These activated microglia release various

cytokines and growth factors, such as insulin-like growth factor 1

(IGF-1), which play a crucial role in the recruitment and activation

of astrocytes (133). After the recruitment, microglia and astrocytes

work together to establish a complex network of glial processes and

extracellular matrix components, ultimately leading to the

formation of a glial scar (134). During the occurrence of injury,

glial scar serves as a physical barrier, aiding in the isolation of the

injured site (135), and the microglia within the glial scar effectively

restrict the spread of damage (136) providing a platform for

microenvironment remodeling and regeneration processes. In

addition, the depletion of microglia cells will inhibit the

proliferation of astrocytes mediated by STAT3 phosphorylation,

resulting in the disruption of scar formation barrier and increasing

neuroinflammation at the injury site (137). However, the role of

glial scar in axon regeneration has been a subject of debate for many

years. Asya Rolls et al. proposed that the glial scar has a dual nature:

it has a beneficial effect during the acute phase of injury, but can

prevent chronic or advanced axonal growth (138). Recent findings

have challenged this idea, revealing that axon growth does not occur

when astrocytes in glial scars are selectively eliminated (139–141).

Taken together, accumulating evidences suggest that the formation

of glial scar mediated by microglia could play a beneficial role at the

site of injury.
4.2 Microglia-mediated
microenvironment remodeling

The phagocytic function of microglia plays a critical role in the

process of neural tissue remodeling after injury. Microglia undergo

both morphological and molecular changes that boost their ability

to perform phagocytosis (142). The replenishment of microglia

occurs in large quantities through the proliferation of resident

microglia, which migrate to and colonize the site of injury in

response to chemotactic signals (71, 143, 144), Microglia

distinguish between cells that need to be engulfed and cells that

need to be rescued through signals of eat-me and do not eat-me

(131). These signals are related to the expression of membrane

proteins on apoptotic neurons and the corresponding receptors on

microglial membranes (145). When microglia cells recognize

apoptotic cells releasing the eat-me signal, they engulf them. The

cellular debris is then digested through the gastrosome (146).

Conversely, when presented with surviving neurons and other

cells releasing do not eat-me signals, microglia support their

survival by secreting neurotrophic factors such as IGF-1 and C3

(147). For example, microglia secrete nicotinamide phosphoribosyl

transferase (NAMPT) during hypoxia and glucose deprivation

(148). This secreted NAMPT exhibits neuroprotective functions

(149). Moreover, microglia protect astrocytes by releasing specific

cytokines and contribute to the restoration of overall brain

homeostasis under hypoxic conditions (150). These evidence
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suggest that microglia play an essential role in maintaining the

microenvironment homeostasis. Angiogenesis is also an important

part of microenvironment remodeling. During the angiogenesis

process, CellChat analysis of single-cell data indicates that microglia

may regulate vascular endothelial cells through the SPP1 and IGF

signaling pathways, promoting endogenous angiogenesis (151).

Following hypoxic-ischemic injury, activated microglia by LPS

stimulation also facilitate vascular endothelial growth factor

(VEGF) secretion and the migration of retinal microvascular

endothelial cells (152). In addition, microglia can transit to a

neuroprotective state, activating the TGF-b1-dependent Smad2/3

pathway through the secretion of extracellular vesicles. This process

inhibits the apoptosis of hypoxic neurons and promotes

angiogenesis post-injury (153). Similarly, OGD-pretreated

microglia have been observed to secrete VEGF, TGF-b, and

matrix metalloproteinase-9 (MMP-9). When transplanted into the

ischemic core boundary, these microglia foster angiogenesis and

axon growth (154). Furthermore, a subset of microglia conducive to

vascular regeneration after hypoxic-ischemic brain injury can be

induced through treatment with certain drugs (155, 156).

Conversely, the depletion of microglia heightens vascular leakage

in the spinal cord during chronic mild hypoxia (157), underscoring

the critical role of microglia in maintaining vascular integrity. In

summary, microglia play multiples roles in the remodeling of the

microenvironment by surveil lance, phagocytosis , and

facilitating angiogenesis.
4.3 Microglia-mediated neural
tissue regeneration

After the microenvironment remodeling is completed, the

neural tissue enters the phase of regeneration. This stage

encompasses two crucial events: neurogenesis and remyelination.

To provide a comprehensive understanding of the impact of

microglia cells on neural tissue regeneration, we will summarize

the roles of microglia during the processes of neurogenesis and

remyelination in the following paragraphs.

4.3.1 Neurogenesis
Neurogenesis refers to the process of neuronal generation,

involving the differentiation of neural progenitor cell (NPC),

migration and maturation of neurons, axonal growth, and

synaptic formation, ultimately establishing a fully functional

neural network (158, 159). Particularly, there is compensatory

neurogenesis after hypoxic-ischemic brain injury (160, 161). This

process requires the involvements of appropriate cytokines,

neurotrophins, and supporting niche cells (162, 163). Therefore,

the unique composition of the neurogenic niche plays a pivotal role

in regulating neurogenesis. Hypoxic-ischemic brain injury triggers

molecular changes in the niche cells, activating niche signals that

influence neurogenesis (164). Microglia, as critical neural niche

cells, play a crucial role in regulating neurogenesis. For example,

when microglia undergo phagocytosis state, their transcriptomes

and secretomes show a tendency to promote neurogenesis (165).

They have been proven to effectively support neural stem cell (NSC)
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proliferation through the secretion of various factors following

hypoxic-ischemic injury, such as IGF-1 (166, 167) and SPP1

(168). The hypoxic-ischemic injury activated microglia can also

impact NPC proliferation through direct cell-cell interactions (169).

A recent study used single-cell sequencing to construct myeloid cell

composition map of the periinfarction area after ischemic stroke in

rats, and further distinguished microglia state conducive to neural

regeneration, the underlying mechanism of which can be attributed

to SOX2 and its involvement in the regulation of Akt and CREB

signaling pathways (170).Studies have shown that the knockout of

the HCAR1 gene inhibits the activation of microglia, thereby

weakening neurogenesis after hypoxic-ischemic brain injury

(171). In vitro experiments showed that NSC cultured in a

conditional medium with anti-inflammatory microglia subtypes

exhibited better cell survival, stronger migration ability, and lower

astrocyte differentiation ability (172). Interestingly, the impact of

microglia on the proliferation of NSC is dependent on their mutual

interactions with each other since the conditional medium directly

collected from primary microglia appears to have no effect on NSC

proliferation (166, 173). Conversely, experiments using transwell

contact culture systems or conditional medium of microglia cells

that directly interact with NSCs both showed a positive effect on

neurogenesis (166, 169, 174, 175). Meanwhile, neural stem cells also

induce microglial response through CXCL/CXCr-related

chemokine signaling (176, 177). Moreover, repopulating microglia

in traumatic brain can promote adult neurogenesis via the IL-6

trans-signaling pathway, and directly improving the survival rate of

newborn neurons and supporting cognitive function (178). A recent

study has also shown that IL-4 driven microglia in the hippocampus

transform to Arg1+ phenotype under stress, and the microglia in

this state promote neurogenesis through the BDNF signaling

pathway (179). Therefore, microglia do not behave phenotypes

that are beneficial to neurogenesis without receiving the signaling

from NSC and other cells in the niche. It is worth to explore and

clarify the communicating factors involved in the crosstalk between

microglia and neurogenic niche cells.

4.3.2 Remyelination
Myelin sheaths, generated by oligodendrocytes, play a crucial

role in the CNS. They are responsible for maintaining the structural

integrity of neurons, providing neurotrophic factors, and facilitating

electrical signal transmission, thereby promoting overall neural

health and cognitive function (180–182). Remyelination refers to

the process in which newly differentiated oligodendrocytes form

myelin sheaths around demyelinated axons, reconstructing efficient

electrical impulse conduction, neural health, and motor function

(183). Although the impact of microglia on myelin sheath

formation during normal development is minimal, they play a

crucial role in maintaining myelin homeostasis. They prevent

excessive myelin phospholipid growth and demyelination while

maintaining the existing balance of myelin lipids (184).

Interestingly, microglia can read the physiological state of

neurons through contact with ranvier, thus changing their own

state to regulate neuronal survival and remyelination (185). In

addition, dong et al. found that microglia can reduce the damage

caused by oxidative stress after demyelination by clearing oxidized
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phosphatidylcholines (186). During the phase of neural

regeneration, activated microglia recruit oligodendrocyte

precursor cell (OPC) and promote their differentiation, thus

supporting the completion of remyelination (187). Particularly

after hypoxic-ischemic brain injury, the activation of microglia

significantly increases during the process of myelin sheath

formation, influencing the differentiation of oligodendrocytes

(188) . Deplet ion of microgl ia leads to a s ignificant

downregulation of myelin formation markers, such as Olig2,

Myrf, and Nkx2.3, exacerbating demyelination (189), and

affecting the differentiation of oligodendrocytes (190).

Interestingly, microglia express genes associated with cell growth-

supporting, such as IGF-1, SPP1, Csf1, and genes related to lipid

metabolism, such as Abca1, Abcg1, Apoe, Apoc1, and Lpl. The high

expression of these cell growth-supporting genes in microglia may

have effects on other cells. Further research is needed to address this

question. This indicates their important role in the repair process

(191). Notably, SPP1 has been implicated in the endogenous repair

process following ischemic-hypoxic brain injury in knockout mice

(192). Further research has revealed that osteopontin (SPP1)

produced by Treg cel ls promotes microglia-mediated

remyelination by interacting with the integrin b1 (ITGb1)
receptor on the surface of microglia (129). However, the exact

proteins secreted by microglia and the OPC receptors involved in

remyelination need to be identified. Overall, the role of microglia in

the process of remyelination after ischemic hypoxic brain injury is

crucial, and further understanding of the regulatory mechanisms

involved is necessary.
5 Conclusions

As native immune cells in the CNS niche, microglia can

perceive changes in the microenvironment and respond

accordingly. Microglial response is a complex process during

hypoxic-ischemic brain injury. The activated microglia exhibit

diverse phenotypes and their heterogeneity is influenced by

different pathological progressions. A better understanding of the

dynamic response of microglia in hypoxic-ischemic brain injury is

necessary to dissect their specific role in shaping the

microenvironment of the CNS after brain damage.

This review comprehensively summarizes the dynamic changes

of microglia in chronic intermittent hypoxia, neonatal hypoxic-

ischemic brain injury, and ischemic stroke. It also analyzes the

dynamic transcriptional profiles during different pathological

stages. We provide an overview of the signaling pathways and

cytokine release mechanisms associated with microglia in

neuroinflammation. Furthermore, we detail the process of

microglia-mediated microenvironment remodeling and

neural regeneration.

Based on the role of microglia in mediating microenvironment

remodeling and neural regeneration, it is necessary to further

exp lore how microg l i a influence other ce l l s in the

microenvironment through cell-to-cell interactions. Moreover,

when microglia release factors that influence other cells, it is

crucial to identify the target cells, their receptors, as well as the
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potential mechanisms and factors involved. These studies will

enable us to gain a more comprehensive understanding of the

interactions among microenvironmental cells in the CNS and the

processes of neural repair after injury.
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