8 research outputs found

    Structural properties and Raman spectroscopy of lipid Langmuir monolayers at the air-water interface

    Full text link
    Spectra of octadecylamine (ODA) Langmuir monolayers and egg phosphatidylcholine (PC)/ODA-mixed monolayers at the air-water interface have been acquired. The organization of the monolayers has been characterized by surface pressure-area isotherms. Application of polarized optical microscopy provides further insight in the domain structures and interactions of the film components. Surface-enhanced Raman scattering (SERS) data indicate that enhancement in Raman spectra can be obtained by strong interaction between headgroups of the surfactants and silver particles in subphase. By mixing ODA with phospholipid molecules and spreading the mixture at the air-water interface, we acquired vibrational information of phospholipid molecules with surfactant-aided SERS effect.Comment: 8 pages, 9 figure

    Synthesis and Characterization of Single-Crystalline In 2

    No full text

    Enhanced Mass Transfer of Ozone and Emerging Pollutants through a Gas–Solid–Liquid Reaction Interface for Efficient Water Decontamination

    No full text
    Ozone (O3), as an environmentally friendly oxidant, is widely used to remove emerging pollutants and ensure the safety of the water supply, whereas the restricted accessibility of O3 and limited collision frequency between pollutants and O3 will inevitably reduce the ozonation efficiency. To promote the chemical reactions between O3 and target pollutants, here we developed a novel gas–solid–liquid reaction interface dominated triphase ozonation system using a functional hydrophobic membrane with an adsorption layer as the O3 distributor and place where chemical reactions occurred. In the triphase system, the functional hydrophobic membrane simultaneously improved the interface adsorption performance of emerging pollutants and the access pathway of O3, leading to a marked enhancement of interfacial pollutant concentration and O3 levels. These synergistic qualities result in high ciprofloxacin (CIP) removal efficiency (94.39%) and fast apparent reaction rate constant (kapp, 2.75 × 10–2 min–1) versus a traditional O3 process (41.82% and 0.48 × 10–2 min–1, respectively). In addition, this triphase system was an advanced oxidation process involving radical participation and showed excellent degradation performance of multiple emerging pollutants. Our findings highlight the importance of gas–solid–liquid triphase reaction interface design and provide new insight into the efficient removal of emerging pollutants by the ozonation process
    corecore