253 research outputs found

    Sum-Rate Optimization for RIS-Aided Multiuser Communications with Movable Antenna

    Full text link
    Reconfigurable intelligent surface (RIS) is known as a promising technology to improve the performance of wireless communication networks, which has been extensively studied. Movable antenna (MA) is a novel technology that fully exploits the antenna position for enhancing the channel capacity. In this paper, we propose a new RIS-aided multiuser communication system with MAs. The sum-rate is maximized by jointly optimizing the beamforming, the reflection coefficient (RC) values of RIS and the positions of MAs. A fractional programming-based iterative algorithm is proposed to solve the formulated non-convex problem, considering three assumptions for the RIS. Numerical results are presented to verify the effectiveness of the proposed algorithm and the superiority of the proposed MA-based system in terms of sum-rate.Comment: 5 page

    Liquid-based infrared optical switch

    Get PDF
    We report an infrared (IR) optical switch using a position-shifting glycerol droplet. The droplet is surrounded by density-matched oil. In the voltage-on state, the droplet shifts in one direction. Upon removing the voltage, the droplet returns to its original position with the aid of interfacial tensions. Due to the strong absorption of glycerol at 1.55 mu m, our IR optical switch shows similar to 95:1 contrast ratio and similar to 200 ms response time. Such a device is promising for fiber optical switch and various IR optical attenuators

    Effects of Soil Temperature, Flooding, and Organic Matter Addition on N 2

    Get PDF
    The objectives of this study were to test the effects of soil temperature, flooding, and raw organic matter input on N2O emissions in a soil sampled at Hongze Lake wetland, Jiangsu Province, China. The treatments studied were—peat soil (I), peat soil under flooding (II), peat soil plus raw organic matter (III), and peat soil under flooding plus organic matter. These four treatments were incubated at 20°C and 35°C. The result showed that temperature increase could enhance N2O emissions rate and cumulative emissions significantly; moreover, the flooded soil with external organic matter inputs showed the lowest cumulative rise in N2O emissions due to temperature increment. Flooding might inhibit soil N2O emissions, and the inhibition was more pronounced after organic matter addition to the original soil. Conversely, organic matter input explained lower cumulative N2O emissions under flooding. Our results suggest that complex interactions between flooding and other environmental factors might appear in soil N2O emissions. Further studies are needed to understand potential synergies or antagonisms between environmental factors that control N2O emissions in wetland soils

    Reconfigurable fabrication of scattering-free polymer network liquid crystal prism/grating/lens

    Get PDF
    We report a simple reconfigurable printing method for fabricating submillisecond-response and scattering-free polymer network liquid crystal photonic devices, such as prism, grating, and lens. To suppress light scattering in the visible region, we reduce the domain sizes by controlling polymer concentration, selecting a high viscosity liquid crystal (LC) host, and performing UV curing at a low temperature. To demonstrate the configurability, we printed a LC micro-prism array with similar to 300-mu m feature size and a circular lens with 1.3-mm radius without any pre-patterned templates. This reconfigurable printing technique enables fast design iterations and should have widespread applications for fabricating display and photonic devices

    A novel adaptive mechanical-wetting lens for visible and near infrared imaging

    Get PDF
    We demonstrate an adaptive mechanical-wetting lens with a concentric reservoir to reduce image aberrations and overcome the gravity effect. This lens adopts liquid pressure to change the interface between two immiscible liquids which, in turn, changes the focal length of the resultant liquid lens. Good optical performance, high resolution, and a wide dynamic range of both positive and negative optical power are achieved. Since no PDMS is employed, such lenses can extend their working range to infrared region by choosing proper liquids

    Polarization independent VOA based on dielectrically stretched liquid crystal droplet

    Get PDF
    A polarization independent variable optical attenuator (VOA) based on a dielectrically stretched liquid crystal (LC) droplet is demonstrated. In the voltage-off state, the proposed VOA has the smallest attenuation. As voltage increases, the LC droplet is stretched by a dielectrophoretic force, which gradually deflects the beam leading to an increased attenuation. Such a VOA can cover the entire C-Band. At lambda = 1550 nm, the following results are obtained: dynamic range similar to 32 dB, insertion loss similar to 0.7 dB, polarization dependent loss similar to 0.3 dB, and response time similar to 20 ms

    A High-Voltage and Low-Noise Power Amplifier for Driving Piezoelectric Stack Actuators

    Get PDF
    In this paper, based on the principles of general operational amplifiers, a high-voltage operational amplifier is developed. Considering the influences of piezoelectric stack actuators on the circuit, a novel structure using the high-voltage operational amplifier as a noninverting amplifier is proposed. Because of the simple circuit principles and the voltage feedback control structure, the proposed power amplifier has the advantages of low noise and small size, and it can be realized by discrete electric elements easily. In the application of precision positioning, a power amplifier using the proposed circuit principles for driving piezoelectric stack actuators is designed, simulated, and tested. The simulated results show that the proposed power amplifier could conform to the theory of the circuit. The experimental results show that the designed power amplifier conforms to the simulation, the bandwidth of the power amplifier is about 57 kHz, and the ripple of the power amplifier is less than 2 mV. Furthermore, the output of the proposed power amplifier maintains the same type of wave within in a large range of frequency, while the input is the sinusoidal or square wave, and the resolution of the mechanism which the power amplifier is applied in is about 4.5 nm. By selecting the critical electronic elements and using feedback control, the proposed circuit structure is able to realize a low-cost and high-performance power amplifier to drive piezoelectric stack actuators flexibly, which is the novel work of the paper

    Informed anytime fast marching tree for asymptotically-optimal motion planning

    Get PDF
    In many applications, it is necessary for motion planning planners to get high-quality solutions in high-dimensional complex problems. In this paper, we propose an anytime asymptotically-optimal sampling-based algorithm, namely Informed Anytime Fast Marching Tree (IAFMT*), designed for solving motion planning problems. Employing a hybrid incremental search and a dynamic optimal search, the IAFMT* fast finds a feasible solution, if time permits, it can efficiently improve the solution toward the optimal solution. This paper also presents the theoretical analysis of probabilistic completeness, asymptotic optimality, and computational complexity on the proposed algorithm. Its ability to converge to a high-quality solution with the efficiency, stability, and self-adaptability has been tested by challenging simulations and a humanoid mobile robot
    • …
    corecore