44 research outputs found

    Gender-specific differences in gene expression profiles in gynogenetic Pengze crucian carp

    No full text
    Gynogenesis is a form of asexual reproduction that is used to obtain all-female fish stocks. In this study, we were interested in studying gender-specific differences in gene expression profiles in gynogenetic teleosts, using a carp species. The four-month old gynogenetic Pengze crucian carp F1 (<i>Carassius auratus </i>var. <i>pengzensis</i>, Pcc) showed a high ratio of males under laboratory culture condition. The present study aimed to investigate the differences between males and females. The gonadosomatic index of the females was significantly higher than that of the males. Moreover, the hepatosomatic index of the females was significantly lower than that of the males. Vitellogenin B mRNA was abnormally highly expressed in male hepatopancreas and testes compared to females. Similarly, zona pellucida 2 expressed at a significantly high level in the testes. For the sex related genes, dosage-sensitive sex reversal, adrenal hypoplasia congenital critical region on the X-chromosome gene 1, doublesex and mab-3 related transcription factor 1a, nuclear receptor subfamily 5, group A, member 1b and SRYbox containing gene 9a had significantly higher expression levels in the males than in the females, whereas there was no difference in expression of anti-Müllerian hormone, cytochrome P450 family 19 subfamily A member 1A and forkhead box L2 transcripts between the two genders. The females showed higher levels of estrogen but no significant difference in testosterone compared to the males. The data suggest remarkable differences between the two genders of the Pengze crucian carp

    table_1_Pituitary Action of E2 in Prepubertal Grass Carp: Receptor Specificity and Signal Transduction for Luteinizing Hormone and Follicle-Stimulating Hormone Regulation.docx

    No full text
    <p>17β-estradiol (E2) is an important sex steroid produced by ovary and brain. In mammals, E2 plays an important role in hypothalamus–pituitary–gonad axis to regulate puberty onset, however, little is known about the functional role of E2 in teleost pituitary. Using prepubertal grass carp as model, three nuclear estrogen receptors (nERs: estrogen receptor alpha, estrogen receptor beta 1, and estrogen receptor beta 2) and two G protein-coupled estrogen receptors (GPER1: GPER1a and GPER1b) were isolated from grass carp pituitary. Tissue distribution analysis indicated that both nERs and GPERs were highly detected in grass carp pituitary, which suggested that E2 should play an important role in grass carp pituitary. Using primary cultured grass carp pituitary cells as model, high-throughput RNA-seq was used to examine the E2-induced differentially expressed genes (DEGs). Transcriptomic analysis showed that E2 could significantly upregulate the expression of 28 genes in grass carp pituitary cells, which were characterized into different functions including reproduction, gonad development, and central nervous system development. Further studies confirmed that E2 could induce luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion and mRNA expression in prepubertal grass carp pituitary in vivo and in vitro. In the pituitary, LH and FSH regulation by E2 were mediated by both ERβ and GPER1. Apparently, E2-induced LHβ and FSHβ mRNA expression were mediated by adenylyl cyclase/cAMP/protein kinase A, phospholipase C/inositol 1,4,5-triphosphate/protein kinase C, and Ca<sup>2+</sup>/calmodulin/CaM-dependent protein kinase II pathways. In addition to LH and FSH, E2 could also induce growth regulation by estrogen in breast cancer 1 (a novel regulator for pituitary development) mRNA expression in grass carp pituitary cells. These results, as a whole, suggested that E2 could play an important role in gonadotropin hormone release and pituitary development in prepubertal grass carp.</p

    table_2_Pituitary Action of E2 in Prepubertal Grass Carp: Receptor Specificity and Signal Transduction for Luteinizing Hormone and Follicle-Stimulating Hormone Regulation.docx

    No full text
    <p>17β-estradiol (E2) is an important sex steroid produced by ovary and brain. In mammals, E2 plays an important role in hypothalamus–pituitary–gonad axis to regulate puberty onset, however, little is known about the functional role of E2 in teleost pituitary. Using prepubertal grass carp as model, three nuclear estrogen receptors (nERs: estrogen receptor alpha, estrogen receptor beta 1, and estrogen receptor beta 2) and two G protein-coupled estrogen receptors (GPER1: GPER1a and GPER1b) were isolated from grass carp pituitary. Tissue distribution analysis indicated that both nERs and GPERs were highly detected in grass carp pituitary, which suggested that E2 should play an important role in grass carp pituitary. Using primary cultured grass carp pituitary cells as model, high-throughput RNA-seq was used to examine the E2-induced differentially expressed genes (DEGs). Transcriptomic analysis showed that E2 could significantly upregulate the expression of 28 genes in grass carp pituitary cells, which were characterized into different functions including reproduction, gonad development, and central nervous system development. Further studies confirmed that E2 could induce luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion and mRNA expression in prepubertal grass carp pituitary in vivo and in vitro. In the pituitary, LH and FSH regulation by E2 were mediated by both ERβ and GPER1. Apparently, E2-induced LHβ and FSHβ mRNA expression were mediated by adenylyl cyclase/cAMP/protein kinase A, phospholipase C/inositol 1,4,5-triphosphate/protein kinase C, and Ca<sup>2+</sup>/calmodulin/CaM-dependent protein kinase II pathways. In addition to LH and FSH, E2 could also induce growth regulation by estrogen in breast cancer 1 (a novel regulator for pituitary development) mRNA expression in grass carp pituitary cells. These results, as a whole, suggested that E2 could play an important role in gonadotropin hormone release and pituitary development in prepubertal grass carp.</p

    Image_1_Isolation and Characterization of AGAMOUS-Like Genes Associated With Double-Flower Morphogenesis in Kerria japonica (Rosaceae).PDF

    No full text
    <p>Double-flower phenotype is more popular and attractive in garden and ornamental plants. There is great interest in exploring the molecular mechanisms underlying the double-flower formation for further breeding and selection. Kerria japonica, a commercial ornamental shrub of the Rosaceae family, is considered an excellent system to determine the mechanisms of morphological alterations, because it naturally has a single-flower form and double-flower variant with homeotic conversion of stamens into petals and carpels into leaf-like carpels. In this study, Sf-KjAG (AGAMOUS homolog of single-flower K. japonica) and Df-KjAG (AGAMOUS homolog of double-flower K. japonica) were isolated and characterized as two AGAMOUS (AG) homologs that occur strictly in single- and double-flower K. japonica, respectively. Our sequence comparison showed that Df-KjAG is derived from ectopic splicing with the insertion of a 2411 bp transposon-like fragment, which might disrupt mRNA accumulation and protein function, into intron 1. Ectopic expression analysis in Arabidopsis revealed that Sf-KjAG is highly conserved in specifying carpel and stamen identities. However, Df-KjAG did not show any putative C-class function in floral development. Moreover, yeast-two-hybrid assays showed that Sf-KjAG can interact with KjAGL2, KjAGL9, and KjAP1, whereas Df-KjAG has lost interactions with these floral identity genes. In addition, loss-of-function of Df-KjAG affected not only its own expression, but also that of other putative floral organ identity genes such as KjAGL2, KjAGL9, KjAP1, KjAP2, KjAP3, and KjPI. In conclusion, our findings suggest that double-flower formation in K. japonica can be attributed to Df-KjAG, which appears to be a mutant produced by the insertion of a transposon-like fragment in the normal AG homolog (Sf-KjAG) of single-flower K. japonica.</p><p>Highlights:Sf-KjAG and Df-KjAG are different variations only distinguished by a transposon-like fragment insertion which lead to the evolutionary transformation from single-flower to double-flowers morphogenesis in Kerria japonica.</p

    Image_2_Isolation and Characterization of AGAMOUS-Like Genes Associated With Double-Flower Morphogenesis in Kerria japonica (Rosaceae).PDF

    No full text
    <p>Double-flower phenotype is more popular and attractive in garden and ornamental plants. There is great interest in exploring the molecular mechanisms underlying the double-flower formation for further breeding and selection. Kerria japonica, a commercial ornamental shrub of the Rosaceae family, is considered an excellent system to determine the mechanisms of morphological alterations, because it naturally has a single-flower form and double-flower variant with homeotic conversion of stamens into petals and carpels into leaf-like carpels. In this study, Sf-KjAG (AGAMOUS homolog of single-flower K. japonica) and Df-KjAG (AGAMOUS homolog of double-flower K. japonica) were isolated and characterized as two AGAMOUS (AG) homologs that occur strictly in single- and double-flower K. japonica, respectively. Our sequence comparison showed that Df-KjAG is derived from ectopic splicing with the insertion of a 2411 bp transposon-like fragment, which might disrupt mRNA accumulation and protein function, into intron 1. Ectopic expression analysis in Arabidopsis revealed that Sf-KjAG is highly conserved in specifying carpel and stamen identities. However, Df-KjAG did not show any putative C-class function in floral development. Moreover, yeast-two-hybrid assays showed that Sf-KjAG can interact with KjAGL2, KjAGL9, and KjAP1, whereas Df-KjAG has lost interactions with these floral identity genes. In addition, loss-of-function of Df-KjAG affected not only its own expression, but also that of other putative floral organ identity genes such as KjAGL2, KjAGL9, KjAP1, KjAP2, KjAP3, and KjPI. In conclusion, our findings suggest that double-flower formation in K. japonica can be attributed to Df-KjAG, which appears to be a mutant produced by the insertion of a transposon-like fragment in the normal AG homolog (Sf-KjAG) of single-flower K. japonica.</p><p>Highlights:Sf-KjAG and Df-KjAG are different variations only distinguished by a transposon-like fragment insertion which lead to the evolutionary transformation from single-flower to double-flowers morphogenesis in Kerria japonica.</p

    3d–4f Metal–Organic Framework with Dual Luminescent Centers That Efficiently Discriminates the Isomer and Homologues of Small Organic Molecules

    No full text
    A 3d–4f luminescent metal–organic framework (MOF), [Tb<sub>2</sub>(Cu<sub>8</sub>I<sub>8</sub>)­(C<sub>12</sub>H<sub>8</sub>NO<sub>2</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·5C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> (<b>4</b>), and three analogues {[La<sub>2</sub>(Cu<sub>8</sub>I<sub>8</sub>)­(C<sub>12</sub>H<sub>8</sub>NO<sub>2</sub>)<sub>6</sub>(C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]·3C<sub>4</sub>H<sub>8</sub>O<sub>2</sub>·2H<sub>2</sub>O (<b>1</b>), [Ce<sub>2</sub>(Cu<sub>8</sub>I<sub>8</sub>)­(C<sub>12</sub>H<sub>8</sub>NO<sub>2</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·5C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> (<b>2</b>), and [Eu<sub>2</sub>(Cu<sub>8</sub>I<sub>8</sub>)­(C<sub>12</sub>H<sub>8</sub>NO<sub>2</sub>)<sub>6</sub>(H<sub>2</sub>O)<sub>4</sub>]·5C<sub>4</sub>H<sub>8</sub>O<sub>2</sub> (<b>3</b>)}, were self-assembled from copper­(I) halide clusters and lanthanide metal ions with an organic linker [3-(pyridin-4-yl)­benzoic acid] under solvothermal conditions. Compound <b>4</b> with high quantum yield (Φ = 68%) exhibits reversible luminescence behavior, accompanying the removal and recovery of guest molecules (1,4-dioxane). Because of the unique porous structure and dual luminescent centers of compound <b>4</b>, it can efficiently differentiate benzene series with different sizes and provide readouts in corresponding optical signals. Furthermore, it also can unambiguously discriminate the isomers, homologues, and other small molecules with similar structural motifs from one another. The luminescent color of the MOF sensor in different guest solvents has obvious changes that can be clearly distinguished by the naked eye. This multicolor luminescence originates from emissions of the dual luminescent centers, and the emissions have shifted, enhanced, weakened, or quenched to different degrees

    A Combination of Let-7d, Let-7g and Let-7i Serves as a Stable Reference for Normalization of Serum microRNAs

    Get PDF
    <div><p>Recent studies have indicated that circulating microRNAs (miRNAs) in serum and plasma are stable and can serve as biomarkers of many human diseases. Measurement of circulating miRNAs with sufficient sensitivity and precision, however, faces some special challenges, among which proper normalization is the most critical but often an underappreciated issue. The primary aim of this study was to identify endogenous reference genes that maintain consistent levels under various conditions to serve as an internal control for quantification of serum miRNAs. We developed a strategy combining Illumina’s sequencing by synthesis (SBS) technology, reverse transcription quantitative polymerase chain reaction (RT-qPCR) assay, literature screening and statistical analysis to screen and validate the most suitable reference genes. A combination of let-7d, let-7g and let-7i is selected as a reference for the normalization of serum miRNAs and it is statistically superior to the commonly used reference genes U6, RNU44, RNU48 and miR-16. This has important implications for proper experimental design and accurate data interpretation.</p> </div

    miR-203 inhibits the migration of A549 cells by targeting PKCα.

    No full text
    <p>A, Transwell analysis of A549 cells treated with equal doses of scrambled ncRNA or pre-miR-203, or equal doses of control siRNA or si-PKCα. Representative images from three independent experiments are shown in the left panel, and a statistical analysis is shown in the right panel (mean ± S.D.; ** <i>p</i><0.01). B, representative images of Transwell analysis of A549 cells that were transfected with ncRNA, pre-miR-203, pre-miR-203 plus PKCα overexpression plasmid, or PKCα overexpression plasmid alone, are shown in the upper panel, and a statistical analysis is shown in the lower panel (mean ± S.D.; ** <i>p</i><0.01).</p

    microRNA-200b and microRNA-200c promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs

    No full text
    <p>MicroRNA-200b and microRNA-200c (miR-200b/c) are 2 of the most frequently upregulated oncomiRs in colorectal cancer cells. The role of miR-200b/c during colorectal tumorigenesis, however, remains unclear. In the present study, we report that miR-200b/c can promote colorectal cancer cell proliferation via targeting the reversion-inducing cysteine-rich protein with Kazal motifs (RECK). Firstly, bioinformatics analysis predicted RECK as a conserved target of miR-200b/c. By overexpressing or knocking down miR-200b/c in colorectal cancer cells, we experimentally validated that miR-200b/c are direct regulators of RECK. Secondly, an inverse correlation between the levels of miR-200b/c and RECK protein was found in human colorectal cancer tissues and cell lines. Thirdly, we demonstrated that repression of RECK by miR-200b/c consequently triggered SKP2 (S-phase kinase-associated protein 2) elevation and p27<sup>Kip1</sup> (also known as cyclin-dependent kinase inhibitor 1B) degradation in colorectal cancer cells, which eventually promotes cancer cell proliferation. Finally, promoting tumor cell growth by miR-200b/c-targeting RECK was also observed in the xenograft mouse model. Taken together, our results demonstrate that miR-200b/c play a critical role in promoting colorectal tumorigenesis through inhibiting RECK expression and subsequently triggering SKP2 elevation and p27<sup>Kip1</sup> degradation.</p
    corecore