296 research outputs found

    The generalized inverses of tensors and an application to linear models

    Full text link
    [EN] In this paper, we recall and extend some tensor operations. Then, the generalized inverse of tensors is established by using tensor equations. Moreover, we investigate the leastsquares solutions of tensor equations. An algorithm to compute the Moore Penrose inverse of an arbitrary tensor is constructed. Finally, we apply the obtained results to higher order Gauss Markov theoremThe fourth author was supported by the National Science Foundation of China [grant number 11361009] and Grant from the High level innovation teams and distinguished scholars in Guangxi Universities [grant number 20160001].Jin, H.; Bai, M.; Benítez López, J.; Liu, X. (2017). The generalized inverses of tensors and an application to linear models. Computers & Mathematics with Applications. 74(3):385-397. doi:10.1016/j.camwa.2017.04.017S38539774

    Comparative study on the in vitro effects of Pseudomonas aeruginosa and seaweed alginates on human gut microbiota

    Get PDF
    Alginates pertain to organic polysaccharides that have been extensively used in food- and medicine-related industries. The present study obtained alginates from an alginate overproducing Pseudomonas aeruginosa PAO1 mutant by screening transposon mutagenesis libraries. The interaction between bacterial and seaweed alginates and gut microbiota were further studied by using an in vitro batch fermentation system. Thin-layer chromatography (TLC) analysis indicated that both bacterial and seaweed alginates can be completely degraded by fecal bacteria isolated from study volunteers, indicating that a minor structural difference between bacterial and seaweed alginates (O-acetylation and lack of G-G blocks) didn’t affect the digestion of alginates by human microbiota. Although, the digestion of bacterial and seaweed alginates was attributed to different Bacteroides xylanisolvens strains, they harbored similar alginate lyase genes. Genus Bacteroides with alginate-degrading capability were enriched in growth medium containing bacterial or seaweed alginates after in vitro fermentation. Short-chain fatty acid (SCFA) production in both bacterial and seaweed alginates was also comparable, but was significantly higher than the same medium using starch. In summary, the present study has isolated an alginate-overproducing P. aeruginosa mutant strain. Both seaweed and bacterial alginates were degraded by human gut microbiota, and their regulatory function on gut microbiota was similar

    Micro-CT Synthesis and Inner Ear Super Resolution via Generative Adversarial Networks and Bayesian Inference

    Full text link
    Existing medical image super-resolution methods rely on pairs of low- and high- resolution images to learn a mapping in a fully supervised manner. However, such image pairs are often not available in clinical practice. In this paper, we address super-resolution problem in a real-world scenario using unpaired data and synthesize linearly \textbf{eight times} higher resolved Micro-CT images of temporal bone structure, which is embedded in the inner ear. We explore cycle-consistency generative adversarial networks for super-resolution task and equip the translation approach with Bayesian inference. We further introduce \emph{Hu Moment distance} the evaluation metric to quantify the shape of the temporal bone. We evaluate our method on a public inner ear CT dataset and have seen both visual and quantitative improvement over state-of-the-art deep-learning-based methods. In addition, we perform a multi-rater visual evaluation experiment and find that trained experts consistently rate the proposed method the highest quality scores among all methods. Furthermore, we are able to quantify uncertainty in the unpaired translation task and the uncertainty map can provide structural information of the temporal bone.Comment: final version in ISBI 202

    The Roles of Serum Selenium and Selenoproteins on Mercury Toxicity in Environmental and Occupational Exposure

    Get PDF
    Many studies have found that mercury (Hg) exposure is associated with selenium (Se) accumulation in vivo. However, human studies are limited. To study the interaction between Se and Hg, we investigated the total Se and Hg concentrations in body fluids and serum Se-containing proteins in individuals exposed to high concentrations of Hg. Our objective was to elucidate the possible roles of serum Se and selenoproteins in transporting and binding Hg in human populations. We collected data from 72 subjects: 35 had very low Hg exposure as evidenced by mean Hg concentrations of 0.91 and 1.25 ng/mL measured in serum and urine, respectively; 37 had high exposure (mean Hg concentrations of 38.5 and 86.8 ng/mL measured in serum and urine, respectively). An association between Se and Hg was found in urine (r = 0.625; p < 0.001) but not in serum. Hg exposure may affect Se concentrations and selenoprotein distribution in human serum. Expression of both selenoprotein P and glutathione peroxidase (GSH-Px) was greatly increased in Hg miners. These increases were accompanied by elevated Se concentrations in serum. In addition, selenoprotein P bound more Hg at higher Hg exposure concentrations. Biochemical observations revealed that both GSH-Px activity and malondialdehyde concentrations increased in serum of the Hg-exposed group. This study aids in the understanding of the interaction between Se and Hg. Selenoproteins play two important roles in protecting against Hg toxicity. First, they may bind more Hg through their highly reactive selenol group, and second, their antioxidative properties help eliminate the reactive oxygen species induced by Hg in vivo

    Origin and Characteristics of the Crude Oils and Condensates in the Callovian-Oxfordian Carbonate Reservoirs of the Amu Darya Right Bank Block, Turkmenistan

    Get PDF
    AbstractThe Amu Darya Right Bank Block is located northeast of the Amu Darya basin, a large petroliferous sedimentary basin, with abundant natural gas resources in carbonate rocks under the ultra-thick gypsum-salt layer. Oil fields producing crude oils have recently been found around large gas fields. Unraveling the origins of the crude oils is crucial for effective petroleum exploration and exploitation. The origin of gas condensates and crude oils was unraveled through the use of comprehensively analytical and interpretative geochemical approaches. Based on oil-source correlation, the reservoir forming process has been restored. The bulk geochemical parameters of the local source rocks of the ADRBB indicated that the local sources have hydrocarbon generation and accumulation potential. The middle-lower Jurassic coal-bearing mudstone is gas prone, while the mudstone of the Callovian-Oxfordian gap layer is oil prone, and the organic matter type of Callovian-Oxfordian carbonate rocks is the mixed type between the two previous source rocks. The interpretation schemes for compositions of n-alkanes, pristane and phytane, C27–C28–C29 sterane distributions, C19+C20–C21–C23 tricyclic terpane distributions, extended tricyclic terpane ratio, and δ13C indicated that crude oil is likely from marine organic matter, while condensates mainly originate from terrestrial organic matter. However, from the perspective of the 18α-trisnorneohopane/17α-trisnorhopane and isomerization ratio of C29 sterane, condensates are too mature to have originated in the local source rocks of the ADRBB, whose maturity is well comparable with that of crude oils. The geochemical, geologic, and tectonic evolutions collectively indicate that the crude oils were most likely generated and migrated from the relatively shallow, lowly mature gap layer and Callovian-Oxfordian carbonate rocks of the ADRBB, while the condensates mostly originated from the relatively deep and highly mature middle-lower coal-bearing mudstone and Callovian-Oxfordian carbonate rocks in the Murgab depression in the southeast of the basin. Basement faults are the key factors affecting the types of oil and gas reservoirs. During the periods of oil and gas migration, traps with basement faults mainly captured natural gas and condensates and traps without basement faults were enriched with crude oils generated from local source rocks
    corecore