45 research outputs found

    Efficient Token-Guided Image-Text Retrieval with Consistent Multimodal Contrastive Training

    Full text link
    Image-text retrieval is a central problem for understanding the semantic relationship between vision and language, and serves as the basis for various visual and language tasks. Most previous works either simply learn coarse-grained representations of the overall image and text, or elaborately establish the correspondence between image regions or pixels and text words. However, the close relations between coarse- and fine-grained representations for each modality are important for image-text retrieval but almost neglected. As a result, such previous works inevitably suffer from low retrieval accuracy or heavy computational cost. In this work, we address image-text retrieval from a novel perspective by combining coarse- and fine-grained representation learning into a unified framework. This framework is consistent with human cognition, as humans simultaneously pay attention to the entire sample and regional elements to understand the semantic content. To this end, a Token-Guided Dual Transformer (TGDT) architecture which consists of two homogeneous branches for image and text modalities, respectively, is proposed for image-text retrieval. The TGDT incorporates both coarse- and fine-grained retrievals into a unified framework and beneficially leverages the advantages of both retrieval approaches. A novel training objective called Consistent Multimodal Contrastive (CMC) loss is proposed accordingly to ensure the intra- and inter-modal semantic consistencies between images and texts in the common embedding space. Equipped with a two-stage inference method based on the mixed global and local cross-modal similarity, the proposed method achieves state-of-the-art retrieval performances with extremely low inference time when compared with representative recent approaches.Comment: Code is publicly available: https://github.com/LCFractal/TGD

    Lattice-based Fault Attacks on Deterministic Signature Schemes of ECDSA and EdDSA

    Get PDF
    The deterministic ECDSA and EdDSA signature schemes have found plenty of applications since their publication and standardization. Their theoretical security can be guaranteed under certain well-designed models, while their practical risks from the flaw of random number generators can be mitigated since no randomness is required by the algorithms anymore. But the situation is not completely optimistic, since it has been gradually found that delicately designed fault attacks can threaten the practical security of the schemes. We present a lattice-based fault analysis method to the deterministic ECDSA and EdDSA algorithms. The underlying fault injection model is a special case of the random fault model in~\cite{MMF2019}. By noticing the algebraic structures of the deterministic algorithms, we show that, when providing with some valid faulty signatures and an associated correct signature of the same input message, some instances of lattice problems can be constructed to recover the signing key. This makes the allowed faulty bits close to the size of the signing key, and obviously bigger than that of the existing differential fault attacks. Moreover, the lattice-based approach supports much more alternative targets of fault injection when comparing with the existing approaches, which further improves its applicability. Experiments are performed to validate the effectiveness of the key recovery method. It is demonstrated that, for 256-bit deterministic ECDSA/EdDSA, the signing key can be recovered efficiently with significant probability even if the targets are affected by 250 (or 247) faulty bits. This is, however, impractical for the existing faulty pattern enumerating approaches

    Continuous Fabrication and Assembly of Spatial Cell-Laden Fibers for a Tissue-Like Construct via a Photolithographic-Based Microfluidic Chip

    Get PDF
    Engineering three-dimensional (3D) scaffolds with in vivo like architecture and function has shown great potential for tissue regeneration. Here we developed a facile microfluidic-based strategy for the continuous fabrication of cell-laden microfibers with hierarchically organized architecture. We show that photolithographically fabricated microfluidic devices offer a simple and reliable way to create anatomically inspired complex structures. Furthermore, the use of photo-cross-linkable methacrylated alginate allows modulation of both the mechanical properties and biological activity of the hydrogels for targeted applications. Via this approach, multilayered hollow microfibers were continuously fabricated, which can be easily assembled in situ, using 3D printing, into a larger, tissue-like construct. Importantly, this biomimetic approach promoted the development of phenotypical functions of the target tissue. As a model to engineer a complex tissue construct, osteon-like fiber was biomimetically engineered, and enhanced vasculogenic and osteogenic expression were observed in the encapsulated human umbilical cord vein endothelial cells and osteoblast-like MG63 cells respectively within the osteon fibers. The capability of this approach to create functional building blocks will be advantageous for bottom-up regeneration of complex, large tissue defects and, more broadly, will benefit a variety of applications in tissue engineering and biomedical research

    Dynamically modulated core-shell microfibers to study the effect of depth sensing of matrix stiffness on stem cell fate

    Get PDF
    It is well known that extracellular matrix stiffness can affect cell fate and change dynamically during many biological processes. Existing experimental means for in situ matrix stiffness modulation often alters its structure, which could induce additional undesirable effects on cells. Inspired by the phenomenon of depth sensing by cells, we introduce here core–shell microfibers with a thin collagen core for cell growth and an alginate shell that can be dynamically stiffened to deliver mechanical stimuli. This allows for the maintenance of biochemical properties and structure of the surrounding microenvironment, while dynamically modulating the effective modulus “felt” by cells. We show that simple addition of Sr2+ in media can easily increase the stiffness of initially Ca2+ cross-linked alginate shells. Thus, despite the low stiffness of collagen cores (<5 kPa), the effective modulus of the matrix “felt” by cells are substantially higher, which promotes osteogenesis differentiation of human mesenchymal stem cells. We show this effect is more prominent in the stiffening microfiber compared to a static microfiber control. This approach provides a versatile platform to independently and dynamically modulate cellular microenvironments with desirable biochemical, physical, and mechanical stimuli without an unintended interplay of effects, facilitating investigations of a wide range of dynamic cellular processes

    DCs Pulsed with Novel HLA-A2-Restricted CTL Epitopes against Hepatitis C Virus Induced a Broadly Reactive Anti-HCV-Specific T Lymphocyte Response

    Get PDF
    OBJECTIVE: To determine the capacity of dendritic cells (DCs) loaded with single or multiple-peptide mixtures of novel hepatitis C virus (HCV) epitopes to stimulate HCV-specific cytotoxic T lymphocyte (CTL) effector functions. METHODS: A bioinformatics approach was used to predict HLA-A2-restricted HCV-specific CTL epitopes, and the predicted peptides identified from this screen were synthesized. Subsequent IFN-γ ELISPOT analysis detected the stimulating function of these peptides in peripheral blood mononuclear cells (PBMCs) from both chronic and self-limited HCV infected subjects (subjects exhibiting spontaneous HCV clearance). Mature DCs, derived in vitro from CD14(+) monocytes harvested from the study subjects by incubation with appropriate cytokine cocktails, were loaded with novel peptide or epitope peptide mixtures and co-cultured with autologous T lymphocytes. Granzyme B (GrB) and IFN-γ ELISPOT analysis was used to test for epitope-specific CTL responses. T-cell-derived cytokines contained in the co-cultured supernatant were detected by flow cytometry. RESULTS: We identified 7 novel HLA-A2-restricted HCV-specific CTL epitopes that increased the frequency of IFN-γ-producing T cells compared to other epitopes, as assayed by measuring spot forming cells (SFCs). Two epitopes had the strongest stimulating capability in the self-limited subjects, one found in the E2 and one in the NS2 region of HCV; five epitopes had a strong stimulating capacity in both chronic and self-limited HCV infection, but were stronger in the self-limited subjects. They were distributed in E2, NS2, NS3, NS4, and NS5 regions of HCV, respectively. We also found that mDCs loaded with novel peptide mixtures could significantly increase GrB and IFN-γ SFCs as compared to single peptides, especially in chronic HCV infection subjects. Additionally, we found that DCs pulsed with multiple epitope peptide mixtures induced a Th1-biased immune response. CONCLUSIONS: Seven novel and strongly stimulating HLA-A2-restricted HCV-specific CTL epitopes were identified. Furthermore, DCs loaded with multiple-epitope peptide mixtures induced epitope-specific CTLs responses

    Bio-Functional Design, Application and Trends in Metallic Biomaterials

    No full text
    Introduction of metals as biomaterials has been known for a long time. In the early development, sufficient strength and suitable mechanical properties were the main considerations for metal implants. With the development of new generations of biomaterials, the concepts of bioactive and biodegradable materials were proposed. Biological function design is very import for metal implants in biomedical applications. Three crucial design criteria are summarized for developing metal implants: (1) mechanical properties that mimic the host tissues; (2) sufficient bioactivities to form bio-bonding between implants and surrounding tissues; and (3) a degradation rate that matches tissue regeneration and biodegradability. This article reviews the development of metal implants and their applications in biomedical engineering. Development trends and future perspectives of metallic biomaterials are also discussed

    Carbonated Nano Hydroxyapatite Crystal Growth Modulated by Poly(ethylene glycol) with Different Molecular Weights

    No full text
    The effects of poly­(ethylene glycol) (PEG) molecular weights on nano hydroxyapatite (n-HA) crystal growth were studied, and a possible mechanism was proposed. n-HA crystals were synthesized in the presence of PEG with different molecular weights via hydrothermal method. Transmission electron microscopy (TEM) analysis showed that the presence of PEG increased the size of n-HA crystals; PEG with larger molecular weights produced larger n-HA crystals. High-resolution TEM observation indicated that all of the n-HA crystals tended to grow along the ⟨002⟩ axis. X-ray diffraction patterns showed that all of the samples consisted of only the HA phase. Besides, PEG increased the crystallinity of n-HA crystals, and this effect was more significant for PEGs with larger molecular weights. Fourier transform infrared results further revealed that all of the crystals were carbonated HA. Thermogravimetry/differential scanning calorimetry analysis detected PEG residues on n-HA particles. To thoroughly study the modulating mechanism of PEGs on n-HA crystal growth, n-HA samples heat-treated for various times were prepared in the presence of PEG20000, and a possible mechanism in which PEG modulated the growth of n-HA crystals was discussed

    Crucial effect of SiC particles on in situ synthesized mullite whisker reinforced Al2O3-SiC composite during microwave sintering

    No full text
    Mullite whisker reinforced Al2O3-SiC composites were in situ synthesized by microwave sintering at 1500°C for 30min. The influence of SiC particle size on heating process and properties of Al2O3-SiC composite were investigated. The XRD and SEM techniques were carried out to characterize the samples. The thermal shock resistance and flexural strength of the samples were examined through water quenching and three-point bending methods, respectively. It was found that the bridging of mullite whisker appeared between Al2O3 and SiC particles which enhanced the thermal shock resistance. A so-called local hot spot effect was proposed dependent on the coupling of SiC particles with microwave, which was the unique feature of microwave sintering. The maximal thermal shock resistance and flexural strength were obtained for the samples with SiC particle size of ~5μm
    corecore