69 research outputs found
The construction of one-dimensional Daubechies wavelet-based finite elements for structural response analysis
The objective of this paper is to develop a family of wavelet-based finite elements for structural response analysis. First, independent wavelet bases are used to approximate displacement functions, unknown coefficients are determined through imposing the continuity, linear independence, completeness, and essential boundary conditions. A family of Daubechies wavelet-based shape functions are then developed, which are hierarchical due to multiresolution property of wavelet. Secondly, to construct wavelet-based finite elements, derivation of the shape functions for a subdomain is employed. Thus, the wavelet-based finite elements being presented are embodied with properties in adaptivity as well as locality. By wavelet preconditioning technology, the two difficulties involving imposition of boundary conditions and compatibility with the traditional finite element methods, which are gathered in the experiments of wavelet-Galerkin context, are well overcome. Numerical examples are used to illustrate the characteristics of the current elements and to assess their accuracy and efficiency
A joint stiffness identification method based on finite element modeling and frequency response functions
Accurate finite element (FE) modeling of mechanical structures is extremely difficult with unknown joints or boundary conditions. An alternative joint stiffness identification method that involves a hybrid of FE model and frequency response functions (FRFs) is presented. Firstly, the joint stiffness is assumed by experience and the mechanical structure is modeled with the FE method. Secondly, the FRFs at the concerned nodes of the structure are simulated and measured, respectively. Then the norm of residual FRFs between the simulations and measurements is calculated. Finally, a sensitivity-based iterative algorithm is derived for minimizing the norm of residual FRFs and the least square method is used to solve over-determined iterative equation. The joints stiffness parameters are identified through the iteration process, while the FE model is updated simultaneously. The proposed joint stiffness identification method is applied on a clamped beam assembly. The first three natural frequencies calculated by the FE model are compared with the measured values. The largest relative error of the simulation deceases from 16.7 % to 2.5 % after the joint stiffness parameters are identified, which demonstrates the effectiveness of the presented method
The multivariable finite elements based on B-spline wavelet on the interval for 1D structural mechanics
Wavelet finite elements with two kinds of variables for 1D structural mechanics are constructed based on B-spline wavelet on the interval (BSWI) and the generalized variational principle. In contrast to the traditional method, the BSWI element with two kinds of variables (TBSWI) can improve the solution accuracy of the generalized stress apparently, because generalized displacement and stress are interpolated separately. Another superiority of the elements constructed is the interpolating function BSWI, which has very good approximation property, further guarantees solution accuracy. Euler beam, Timoshenko beam and Elastic foundation beam are studied providing several numerical examples to verify the efficiency
Study of characteristic variations of high-speed spindles induced by centrifugal expansion deformations
High-speed machining has continuously pushed the demand of spindles with higher speed and higher reliability. In order to design, analyze, and test spindles in a virtual environment, accurate modeling of the spindle dynamics during the running state is essential. This paper investigates the variations of interference fit and bearing preload condition induced by centrifugal expansion deformations at high speed. Firstly, the elastic expansion deformations of the rotating parts due to centrifugal force are calculated based on mechanics of elasticity. It is found that the centrifugal expansion deformation of the bearing inner ring is much larger than the deformation of the shaft when the rotational speed increases, and therefore the amount of the interference between the shaft and the bearing decreases with the speed. Then, with consideration of the centrifugal expansion deformation, a dynamic model of high-speed rolling ball bearings is presented with experimental validation. With the proposed bearing model, centrifugal effects on the bearing preload condition are studied in detail. It is shown that the bearing contact angle decreases, while the contact load increases with the centrifugal expansion deformation of the bearing inner ring. The radial bearing stiffness increases, whereas the axial bearing stiffness decreases a little, due to the resultant effects of the decreased contact angle and the increased contact load. The preload condition of the spindle bearing is strengthened by the centrifugal expansion effect of the bearing inner ring
A spring dashpot model for dynamic analysis of beam-like structure with clearance
In a large number of engineering structures, clearance always exists due to assemblage, manufacturing errors and wear. The presence of clearance may lead to intermittent contact or impacts. For such structures accurate assessment of dynamic response is necessary for design against excessive vibration and wear as well as noise. In this paper we are interested in the study of the dynamic behavior of a cantilever beam structure with clearance. Simulation and experimental tests were carried out for this goal. For simulation tests, clearance was equivalent to a spring-dashpot model with consideration of vertical and angular motions, the impact of beam and boundary face was also taken into consideration. A cantilever beam set-up was designed and built for experimental validations. The presented results showed that the system responses were greatly influenced in the presence of clearance. The peak value of beam’s time-domain signal is larger with the clearance enlargement. The high-order harmonics are more possible to exist in frequency-domain signals when clearance size increases. The effects of clearance should not be ignored when analyzing the dynamic performance and vibration characteristic of engineering structures
A simple and efficient method for extraction of Taq DNA polymerase
Background: Thermostable DNA polymerase (Taq Pol \u399) from Thermus
aquaticus has beenwidely used in PCR, which was usually extracted
with Pluthero's method. Themethod used ammonium sulfate to precipitate
the enzyme, and it saved effort and money but not time. Moreover, we
found that 30\u201340% activity of Taq Pol I was lost at the ammonium
sulfate precipitation step, and the product contained a small amount of
DNA. Results: We provided a novel, simplified and low-costmethod to
purify the Taq Pol \u399 after overproduction of the enzyme in
Escherichia coli , which used ethanol instead of ammonium sulfate to
precipitate the enzyme. The precipitate can be directly dissolved in
the storage buffer without dialysis. In addition, DNA and RNA
contamination was removed with DNase I and RNase A before
precipitation, and the extraction procedure was optimized. Our
improvements increase recovery rate and specific activity of the
enzyme, and save labor, time, and cost. Conclusions: Our method uses
ethanol, DNase I, and RNase A to purify the Taq Pol \u399, and
simplifies the operation, and increases the enzyme recovery rate and
quality
BMP10 preserves cardiac function through its dual activation of SMAD-mediated and STAT3-mediated pathways
Bone morphogenetic protein 10 (BMP10) is a cardiac peptide growth factor belonging to the transforming growth factor β superfamily that critically controls cardiovascular development, growth, and maturation. It has been shown that BMP10 elicits its intracellular signaling through a receptor complex of activin receptor-like kinase 1 with morphogenetic protein receptor type II or activin receptor type 2A. Previously, we generated and characterized a transgenic mouse line expressing BMP10 from the α-myosin heavy chain gene promoter and found that these mice have normal cardiac hypertrophic responses to both physiological and pathological stimuli. In this study, we report that these transgenic mice exhibit significantly reduced levels of cardiomyocyte apoptosis and cardiac fibrosis in response to a prolonged administration of the β-adrenoreceptor agonist isoproterenol. We further confirmed this cardioprotective function with a newly generated conditional Bmp10 transgenic mouse line, in which Bmp10 was activated in adult hearts by tamoxifen. Moreover, the intraperitoneal administration of recombinant human BMP10 was found to effectively protect hearts from injury, suggesting potential therapeutic utility of using BMP10 to prevent heart failure. Gene profiling and biochemical analyses indicated that BMP10 activates the SMAD-mediated canonical pathway and, unexpectedly, also the signal transducer and activator of transcription 3 (STAT3)-mediated signaling pathway both in vivo and in vitro Additional findings further supported the notion that BMP10's cardioprotective function likely is due to its dual activation of SMAD- and STAT3-regulated signaling pathways, promoting cardiomyocyte survival and suppressing cardiac fibrosis
PINK1 Protects Against Gentamicin-Induced Sensory Hair Cell Damage: Possible Relation to Induction of Autophagy and Inhibition of p53 Signal Pathway
Phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1) is a gatekeeper of mitochondrial quality control. The present study was aimed to examine whether PINK1 possesses a protective function against gentamicin (GM)-induced sensory hair cell (HC) damage in vitro. The formation of parkin particles (a marker revealing the activation of PINK1 pathway which is a substrate of PINK1 and could signal depolarized mitochondria for clearance) and autophagy were determined by immunofluorescence staining. The expressions of PINK1, LC3B, cleaved-caspase 3 and p53 were measured by Western blotting. The levels of reactive oxygen species (ROS) and apoptosis were respectively evaluated by DCFH-DA staining, Annexin V Apoptosis Detection Kit and TUNEL staining. Cell viability was tested by a CCK8 kit. We found that treatment of 400 μM GM elicited the formation of ROS, which, in turn, led to PINK1 degradation, parkin recruitment, autophagy formation, an increase of p53 and cleaved-caspase 3 in HEI-OC1 cells and murine HCs. In contrast, co-treatment with ROS scavenger N-acetyl-L-cysteine (NAC) inhibited parkin recruitment, alleviated autophagy and p53 pathway-related damaged-cell elimination. Moreover, PINK1 interference contributed to a decrease of autophagy but an increase of p53 level in HEI-OC1 cells in response to GM stimulus. Findings from this work indicate that PINK1 alleviates the GM-elicited ototoxicity via induction of autophagy and resistance the increase of p53 in HCs
QKI is a critical pre-mRNA alternative splicing regulator of cardiac myofibrillogenesis and contractile function
The RNA-binding protein QKI belongs to the hnRNP K-homology domain protein family, a well-known regulator of pre-mRNA alternative splicing and is associated with several neurodevelopmental disorders. Qki is found highly expressed in developing and adult hearts. By employing the human embryonic stem cell (hESC) to cardiomyocyte differentiation system and generating QKI-deficient hESCs (hESCs-QKIdel) using CRISPR/Cas9 gene editing technology, we analyze the physiological role of QKI in cardiomyocyte differentiation, maturation, and contractile function. hESCs-QKIdel largely maintain normal pluripotency and normal differentiation potential for the generation of early cardiogenic progenitors, but they fail to transition into functional cardiomyocytes. In this work, by using a series of transcriptomic, cell and biochemical analyses, and the Qki-deficient mouse model, we demonstrate that QKI is indispensable to cardiac sarcomerogenesis and cardiac function through its regulation of alternative splicing in genes involved in Z-disc formation and contractile physiology, suggesting that QKI is associated with the pathogenesis of certain forms of cardiomyopathies
- …