544 research outputs found

    Determining Singularity-Free Inner Workspace through Offline Conversion of Assembly Modes for a 3-RRR PPM

    Get PDF
    The existing singularity avoidance methods have deficiencies, such as the conditionality of the online conversion of the assembly modes (AMs) and the kinematically redundant manipulator with the predicament of the prototype design and added complexity of the mechanism. To address these issues, a method to determine a singularity-free inner workspace through offline conversion of the AMs of the 3-RRR planar parallel manipulator (PPM) is presented. Based on the geometric relations among rods of the manipulator during the occurrence of singularity, and the singular points at or near the boundary of the workspace are permitted, the AMs and ranges of the orientation angle of the moving platform corresponding to the inner singularity-free workspace are determined through a three-dimensional search method. The simulation and experimental comparisons indicate that singular-free paths related to the constant or variable orientation angle of the moving platform can be planned on the singularity-free inner workspace

    Experimental analysis on physical and mechanical properties of thermal shock damage of granite

    Get PDF
    The purpose of this study was to explore the changes of mechanical and physical properties of granite under different thermal loading effects. Uniaxial compression experiments studying the rules of the influence of temperature load on mechanical properties of granite were carried out. After high-temperature heating at above 600 °C, granite tended to have stronger ductility and plasticity as well as declined peak stress and compressive strength. Thermogravimetry - differential scanning calorimetry (TG-DSC) analysis results showed that, thermal load at different temperatures induced reactions such as water loss, oxidation and crystallization in the microstructure of granite, which led to physical changes of granite. Hence it is concluded that, heating can significantly weaken the mechanical performance of granite, which provides an important support for the optimization of heating assisted processing of granite. It also reveals that, heating assisted cutting technique can effectively lower energy consumption and improve processing efficiency

    Mapping the landscape and exploring trends in macrophage-related research within non-small cell lung cancer: a comprehensive bibliometric analysis

    Get PDF
    BackgroundMacrophages play a pivotal role in the research landscape of non-small cell lung cancer (NSCLC), contributing significantly to understanding tumor progression, treatment resistance, and immunotherapy efficacy. In this study, we utilized bibliometric techniques to analyze shifts in research hotspots and trends within the field, while also forecasting future research directions. These insights aim to offer guidance for both clinical therapeutic interventions and foundational scientific inquiries.MethodsAll publications were released between 1993 and 2023 and focus on research pertaining to macrophages in the field of NSCLC. The articles were identified from the Web of Science Core Collection and analyzed using VOSviewer 1.6.19, CiteSpace 6.2.R2, and Scimago Graphica 1.0.35.ResultA total of 361 articles authored by 3,072 researchers from 48 countries were included in the analysis. TAMs have gained increasing attention for their role in NSCLC development and as potential therapeutic targets. Modulating TAM behavior may offer avenues to suppress tumor growth and drug resistance, improving patient outcomes. International collaboration, particularly between China and the United States, accelerates progress in NSCLC research, benefiting patients worldwide. The research hotspot revolves around understanding the role of macrophages in immunotherapy, focusing on their contribution to tumor progression, therapeutic resistance, and potential as therapeutic targets in NSCLC.ConclusionsThe therapeutic significance of macrophages in the field of NSCLC is gaining increasing attention and recognition, highlighting their potential as key players in the development of novel treatment strategies. Future research will focus on understanding TAM molecular mechanisms, interactions with immune cells, and exploring novel therapies, with the aim of improving NSCLC treatment outcomes

    Energy Consumption Prediction for 3-RRR PPM through Combining LSTM Neural Network with Whale Optimization Algorithm

    Get PDF
    In the process of minimizing the energy consumption of a 3-RRR planar parallel manipulator (3-RRR PPM) and even general parallel kinematic manipulators, obtaining optimal results usually depends on particular functional relation between the instantaneous position of the moving platform and the kinetic time, which is called a displacement model (DM). Nevertheless, it is likely that although the movement time and path of a moving platform are the same, different amounts of energy are consumed for different DMs of the moving platform. To address this, a method of using long short-term memory neural network (LSTM-NN) instead of a complex theoretical model to predict the energy consumption of a 3-RRR PPM was presented. Subsequently, inverse dynamic equations of 3-RRR PPM were established based on the Newton–Euler method and solved using QR decomposition. Meanwhile, energy consumption between any two points in workspace of the 3-RRR PPM was programmed to provide the LSTM-NN with abundant precise training data. In view of time-varying characteristics of energy consumption prediction, the network architecture was developed based on the principle of LSTM-NN, and root-mean-square error (RMSE) was taken as the loss function. After acquiring training data, the RMSE of the LSTM-NN reached 0.00041 using whale optimization algorithm (WOA) with no need for the gradient of the loss function, so the lack of solving precision in training LSTM-NN was effectively improved. Finally, two different DMs of a moving platform with the same path and movement time were chosen to compare the total energy consumption of the 3-RRR PPM from the simulations, predictions, and experiments. The results showed that the relative error between predicted and experimental data was less than 2.50%. Therefore, the energy consumption prediction based on the LSTM-NN will be useful for achieving the intelligent application of 3-RRR PPMs.https://doi.org/10.1155/2020/659039

    Identification of Colletotrichum horii Isolated from Postharvest Fig Anthracnose and Its Control by Bacillus velezensis

    Get PDF
    Anthracnose, a common postharvest fungal disease of fruits, can cause severe economic losses. A pathogenic strain named FC.006 was isolated from postharvest anthracnose of ‘Browns Wick’ figs by the traditional fungal isolation method. FC.006 was identified as Colletotrichum horii by morphological observation, multigene sequence identification and phylogenetic tree analysis. In order to investigate a biological control method for FC.006, the control effect of the biocontrol agent Bacillus velezensis RD.006 on FC.006 in vitro and infected figs was evaluated. The results showed that the inhibition rate of FC.006 by RD.006 was 85% when co-cultured in vitro for 8 days. RD.006 had good disease control effect on figs infected with FC.006, and significantly increased the expression of the FcPAL, Fc4CL, FcC4H, FcCAT, FcAPX, and FcPOD genes at the early stage after inoculation (P < 0.05). To sum up, C. horii FC.006 can cause fig anthracnose, and Bacillus velezensis RD.006 can effectively control postharvest anthracnose in figs through direct antibiosis and induction of fruit disease resistance

    MiR-185 Targets the DNA Methyltransferases 1 and Regulates Global DNA Methylation in human glioma

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Perturbation of DNA methylation is frequent in cancers and has emerged as an important mechanism involved in tumorigenesis. To determine how DNA methylation is modified in the genome of primary glioma, we used Methyl-DNA immunoprecipitation (MeDIP) and Nimblegen CpG promoter microarrays to identify differentially DNA methylation sequences between primary glioma and normal brain tissue samples.</p> <p>Methods</p> <p>MeDIP-chip technology was used to investigate the whole-genome differential methylation patterns in glioma and normal brain tissues. Subsequently, the promoter methylation status of eight candidate genes was validated in 40 glioma samples and 4 cell lines by Sequenom's MassARRAY system. Then, the epigenetically regulated expression of these genes and the potential mechanisms were examined by chromatin immunoprecipitation and quantitative real-time PCR.</p> <p>Results</p> <p>A total of 524 hypermethylated and 104 hypomethylated regions were identified in glioma. Among them, 216 hypermethylated and 60 hypomethylated regions were mapped to the promoters of known genes related to a variety of important cellular processes. Eight promoter-hypermethylated genes (ANKDD1A, GAD1, HIST1H3E, PCDHA8, PCDHA13, PHOX2B, SIX3, and SST) were confirmed in primary glioma and cell lines. Aberrant promoter methylation and changed histone modifications were associated with their reduced expression in glioma. In addition, we found loss of heterozygosity (LOH) at the miR-185 locus located in the 22q11.2 in glioma and induction of miR-185 over-expression reduced global DNA methylation and induced the expression of the promoter-hypermethylated genes in glioma cells by directly targeting the DNA methyltransferases 1.</p> <p>Conclusion</p> <p>These comprehensive data may provide new insights into the epigenetic pathogenesis of human gliomas.</p

    Tumor-Derived Exosomal Protein Tyrosine Phosphatase Receptor Type O Polarizes Macrophage to Suppress Breast Tumor Cell Invasion and Migration

    Get PDF
    Tumor-derived exosomes, containing multiple nucleic acids and proteins, have been implicated to participate in the interaction between tumor cells and microenvironment. However, the functional involvement of phosphatases in tumor-derived exosomes is not fully understood. We and others previously demonstrated that protein tyrosine phosphatase receptor type O (PTPRO) acts as a tumor suppressor in multiple cancer types. In addition, its role in tumor immune microenvironment remains elusive. Bioinformatical analyses revealed that PTPRO was closely associated with immune infiltration, and positively correlated to M1-like macrophages, but negatively correlated to M2-like macrophages in breast cancer tissues. Co-cultured with PTPRO-overexpressing breast cancer cells increased the proportion of M1-like tumor-associated macrophages (TAMs) while decreased that of M2-like TAMs. Further, we observed that tumor-derived exosomal PTPRO induced M1-like macrophage polarization, and regulated the corresponding functional phenotypes. Moreover, tumor cell-derived exosomal PTPRO inhibited breast cancer cell invasion and migration, and inactivated STAT signaling in macrophages. Our data suggested that exosomal PTPRO inhibited breast cancer invasion and migration by modulating macrophage polarization. Anti-tumoral effect of exosomal PTPRO was mediated by inactivating STAT family in macrophages. These findings highlight a novel mechanism of tumor invasion regulated by tumor-derived exosomal tyrosine phosphatase, which is of translational potential for the therapeutic strategy against breast cancer

    Attenuation of antigen-induced airway hyperresponsiveness and inflammation in CXCR3 knockout mice

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>CD8+ T cells participate in airway hyperresponsiveness (AHR) and allergic pulmonary inflammation that are characteristics of asthma. CXCL10 by binding to CXCR3 expressed preferentially on activated CD8+ T cells, attracts T cells homing to the lung. We studied the contribution and limitation of CXCR3 to AHR and airway inflammation induced by ovalbumin (OVA) using CXCR3 knockout (KO) mice.</p> <p>Methods</p> <p>Mice were sensitized and challenged with OVA. Lung histopathological changes, AHR, cellular composition and levels of inflammatory mediators in bronchoalveolar lavage (BAL) fluid, and lungs at mRNA and protein levels, were compared between CXCR3 KO mice and wild type (WT) mice.</p> <p>Results</p> <p>Compared with the WT controls, CXCR3 KO mice showed less OVA-induced infiltration of inflammatory cells around airways and vessels, and less mucus production. CXCR3 KO mice failed to develop significant AHR. They also demonstrated significantly fewer CD8+ T and CD4+ T cells in BAL fluid, lower levels of TNFα and IL-4 in lung tissue measured by real-time RT-PCR and in BAL fluid by ELISA, with significant elevation of IFNγ mRNA and protein expression levels.</p> <p>Conclusions</p> <p>We conclude that CXCR3 is crucial for AHR and airway inflammation by promoting recruitment of more CD8+ T cells, as well as CD4+ T cells, and initiating release of proinflammatory mediators following OVA sensitization and challenge. CXCR3 may represent a novel therapeutic target for asthma.</p
    • 

    corecore