46 research outputs found

    AdaMEC: Towards a Context-Adaptive and Dynamically-Combinable DNN Deployment Framework for Mobile Edge Computing

    Full text link
    With the rapid development of deep learning, recent research on intelligent and interactive mobile applications (e.g., health monitoring, speech recognition) has attracted extensive attention. And these applications necessitate the mobile edge computing scheme, i.e., offloading partial computation from mobile devices to edge devices for inference acceleration and transmission load reduction. The current practices have relied on collaborative DNN partition and offloading to satisfy the predefined latency requirements, which is intractable to adapt to the dynamic deployment context at runtime. AdaMEC, a context-adaptive and dynamically-combinable DNN deployment framework is proposed to meet these requirements for mobile edge computing, which consists of three novel techniques. First, once-for-all DNN pre-partition divides DNN at the primitive operator level and stores partitioned modules into executable files, defined as pre-partitioned DNN atoms. Second, context-adaptive DNN atom combination and offloading introduces a graph-based decision algorithm to quickly search the suitable combination of atoms and adaptively make the offloading plan under dynamic deployment contexts. Third, runtime latency predictor provides timely latency feedback for DNN deployment considering both DNN configurations and dynamic contexts. Extensive experiments demonstrate that AdaMEC outperforms state-of-the-art baselines in terms of latency reduction by up to 62.14% and average memory saving by 55.21%

    Cataract Preventive Role of Isolated Phytoconstituents: Findings from a Decade of Research

    No full text
    Cataract is an eye disease with clouding of the eye lens leading to disrupted vision, which often develops slowly and causes blurriness of the eyesight. Although the restoration of the vision in people with cataract is conducted through surgery, the costs and risks remain an issue. Botanical drugs have been evaluated for their potential efficacies in reducing cataract formation decades ago and major active phytoconstituents were isolated from the plant extracts. The aim of this review is to find effective phytoconstituents in cataract treatments in vitro, ex vivo, and in vivo. A literature search was synthesized from the databases of Pubmed, Science Direct, Google Scholar, Web of Science, and Scopus using different combinations of keywords. Selection of all manuscripts were based on inclusion and exclusion criteria together with analysis of publication year, plant species, isolated phytoconstituents, and evaluated cataract activities. Scientists have focused their attention not only for anti-cataract activity in vitro, but also in ex vivo and in vivo from the review of active phytoconstituents in medicinal plants. In our present review, we identified 58 active phytoconstituents with strong anti-cataract effects at in vitro and ex vivo with lack of in vivo studies. Considering the benefits of anti-cataract activities require critical evaluation, more in vivo and clinical trials need to be conducted to increase our understanding on the possible mechanisms of action and the therapeutic effects

    Involvement of Nrf2 in Ocular Diseases

    No full text
    The human body harbors within it an intricate and delicate balance between oxidants and antioxidants. Any disruption in this checks-and-balances system can lead to harmful consequences in various organs and tissues, such as the eye. This review focuses on the effects of oxidative stress and the role of a particular antioxidant system—the Keap1-Nrf2-ARE pathway—on ocular diseases, specifically age-related macular degeneration, cataracts, diabetic retinopathy, and glaucoma. Together, they are the major causes of blindness in the world

    Application of Hierarchical Clustering Endmember Modeling Analysis for Identification of Sedimentary Environment in the Houtao Section of the Upper Yellow River

    No full text
    The unmixing of grain-size distribution (GSD) with multivariate statistical analysis provides insight into sediment provenance, transport processes and environment conditions. In this article, we performed hierarchical clustering endmember modeling analysis (CEMMA) to identify the sedimentary environment of fluvial deposits at core HDZ04 drilled in the paleofloodplain on the north bank of the upper Yellow River. The CEMMA results show that four end members can effectively explain the variance in the dataset. End-Member 1 and End-Member 2 are polymodal and dominated by silty clay, and they are associated with the suspended load. End-Member 3 is composed of fine sand and silt, and medium-coarse sand makes up the majority of End-Member 4, corresponding to a mixed saltation load and bed load, respectively. Combined with the end-member scores, we constructed energy values to further divide the core samples into different depositional environments. Unit 2 and unit 5 have a high proportion of coarser end-member components, presenting a shallow channel and a high-energy channel environment, respectively. Unit 1 and unit 3 are composed of fine-grained silt and clay and are dominated by finer end-member components, which can be interpreted as a floodplain situation. Unit 4 is characterized by frequent fluctuations in grain-size composition and energy values, indicating the transition from a high-energy river channel to floodplain deposits. For the channel sedimentary environment, the accumulation rate was relatively low (0.32 mm/yr) due to the frequency migration of the channel. A high accumulation rate of the fluvial deposits had occurred in unit 1 during 1.6 Ka (4.35 mm/yr), which was a response to the influence of increased fluvial instability and human activity during the late Holocene

    Urban Network Structures and Organization Models Based on the Road Less-Truck-Load Dedicated Line Data in China

    No full text
    Against the background of the increasing trend of fragmentation of freight demand, the spatial structure analysis of urban networks using road Less-Truck-Load (LTL) dedicated lines has positive implications for enriching the flow space theory and empirical evidence. Based on the social network analysis method, this study used the data of the national prefecture-level and above cities' road LTL dedicated lines on the China Communications Logistics LOGINK System in 2018, and conducted feature mining of Chinese city network relationships from the perspective of road LTL dedicated lines at three levels: city nodes, intercity connections, and sub-networks. The results show the following: (1) Shanghai, Tianjin, Zhengzhou, Guangzhou, and Hangzhou dominated the network. Based on the cargo flow organization coefficients, urban nodes can be divided into four types: strong center, second strong center, weak center, and subordinate. The number of high-grade cities in the network was relatively small and mainly concentrated in the eastern and central regions. The imbalance in the spatial distribution is obvious. (2) Among the top ten cities in terms of the amount of first contact, the ratio of export-oriented cities to import-oriented cities is 4:1, which reflects the imbalance in cargo flow. The network space carved by the road LTL dedicated lines data showed a significant distance attenuation law. The road LTL dedicated lines connections are mainly distributed in the intercity range of 0-200 km and the interprovincial range of 200-500 km, with the number of special lines concentrated in 500 km accounting for 41.9%. (3) The community detection algorithm was used to identify six urban communities with significant regional characteristics, including the Northeast Jilumeng, Zhongyuan, Guanzhong, Jianghuai, Pan-Pearl, Delta-Yangtze River Delta, and Changzhutan communities. The community structures showed clear spatial agglomeration and cross-administrative features. (4) To enhance the status of the nodes of the road LTL network and optimize the organization of the network space, the following suggestions are put forward: Urban networks based on the road LTL dedicated line data should enhance the service capacity of the Chengdu-Chongqing urban agglomeration road LDL line, strengthen the industrial agglomeration and driving role of core cities, optimize the industrial structure of marginal cities, strengthen the integration of transportation and industry, and actively guide the car-free carrier platform to improve the efficiency of road freight organization. In future studies, long-term cycles and multiple data sources should be enhanced to verify the validity and reliability of the findings

    Zircon LA-ICP-MS U-Pb Ages and the Hf Isotopic Composition of the Ore-Bearing Porphyry from the Yanghuidongzi Copper Deposit, Heilongjiang, China, and Its Geological Significance

    No full text
    The Yanghuidongzi copper deposit is a typical porphyry copper deposit located at the eastern margin of the Xing’anling-Mongolian Orogenic Belt (XMOB). While much attention have been paid to the ore-forming age of the deposit and the magma source of the ore-bearing porphyry, this paper approaches this issue with the methods of the LA-ICP-MS zircon U-Pb dating and Lu-Hf isotopic composition of the Yanghuidongzi porphyry copper deposit. The results reveal that the Yanghuidongzi porphyry copper deposit was formed in the Early Jurassic (189.6 ± 1.0 Ma), which corresponds to the time of magmatic activity in this region. The background studies of ore-forming dynamics indicate that the formation of the Yanghuidongzi copper deposit is related to the subduction of the Paleo-Pacific plate. The Yanghuidongzi ore-bearing porphyry zircons have a positive εHf(t) value (4.4–7.0), a high 176Hf/177Hf ratio (0.282786–0.282854), and a two-stage Hf model ages (TDM2) ranging from 783 Ma to 943 Ma, all of which suggest that the Early Jurassic granodiorite porphyry of the Yanghuidongzi deposit was formed by the partial melting of newly grown crustal material from the depleted mantle in the Neoproterozoic

    Efficacy of Supplementation with B Vitamins for Stroke Prevention: A Network Meta-Analysis of Randomized Controlled Trials.

    No full text
    Supplementation with B vitamins for stroke prevention has been evaluated over the years, but which combination of B vitamins is optimal for stroke prevention is unclear. We performed a network meta-analysis to assess the impact of different combinations of B vitamins on risk of stroke.A total of 17 trials (86 393 patients) comparing 7 treatment strategies and placebo were included. A network meta-analysis combined all available direct and indirect treatment comparisons to evaluate the efficacy of B vitamin supplementation for all interventions.B vitamin supplementation was associated with reduced risk of stroke and cerebral hemorrhage. The risk of stroke was lower with folic acid plus vitamin B6 as compared with folic acid plus vitamin B12 and was lower with folic acid plus vitamin B6 plus vitamin B12 as compared with placebo or folic acid plus vitamin B12. The treatments ranked in order of efficacy for stroke, from higher to lower, were folic acid plus vitamin B6 > folic acid > folic acid plus vitamin B6 plus vitamin B12 > vitamin B6 plus vitamin B12 > niacin > vitamin B6 > placebo > folic acid plus vitamin B12.B vitamin supplementation was associated with reduced risk of stroke; different B vitamins and their combined treatments had different efficacy on stroke prevention. Folic acid plus vitamin B6 might be the optimal therapy for stroke prevention. Folic acid and vitamin B6 were both valuable for stroke prevention. The efficacy of vitamin B12 remains to be studied
    corecore