234 research outputs found

    An Exploratory Study on CLU, CR1 and PICALM and Parkinson Disease

    Get PDF
    Recent GWAS and subsequent confirmation studies reported several single-nucleotide polymorphisms (SNPs) at the CLU, CR1 and PICALM loci in association with late-onset Alzheimer's disease (AD). Parkinson disease (PD) shares several clinical and pathologic characteristics with AD; we therefore explored whether these SNPs were also associated with PD risk.791 non-Hispanic Whites cases and 1,580 matched controls were included in the study. Odds ratios (OR) and 95% confidence intervals (CI) were obtained from logistic regression models. rs11136000 at the CLU locus was associated with PD risk under the recessive model (comparing TT versus CC+CT: OR = 0.71, 95% CI: 0.55-0.92, p = 0.008) after adjusting for year of birth, gender, smoking, and caffeine intake. Further adjustment for family history of PD and ApoE ε4 status did not change the result. In addition, we did not find evidence for effect modification by ApoE or known PD risk factors. The association, however, appeared to be stronger for PD with dementia (OR = 0.49, 95% CI: 0.27-0.91) than for PD without dementia (OR = 0.81, 95% CI: 0.61-1.06). The two other SNPs, rs6656401 from CR1, and rs3851179 from PICALM region were not associated with PD (p>0.05).Our exploratory analysis suggests an association of CLU with PD. This exploratory finding and the role of dementia in explaining this finding needs further investigation

    Impact of thermal processing on dietary flavonoids

    Get PDF
    Financiado para publicación en acceso aberto: Universidade de Vigo/CISUGFlavonoids are widely distributed in natural products and foods as a class of polyphenols. They processed diverse bioactivities, including anti-inflammation activity, antiaging activity, and antioxidant activity. The foods rich in flavonoids are usually consumed after thermal processing. However, flavonoids are commonly vulnerable under thermal processing, and it could cause various influences on their stability and bioactivities. Therefore, in this review, the effects of thermal processing on thermal stability and bioactivities of dietary flavonoids from different food sources were first summarized. The strategies to improve thermal stability of dietary flavonoids were then discussed. Noticeably, the effect of some of the promising thermal technologies on dietary flavonoids was also clarified preliminarily in the current review. The promising thermal technologies may be an alternative to conventional thermal processing technologies.Agencia Estatal de Investigación | Ref. RYC2020-030365-

    Novel sequences of subgroup J avian leukosis viruses associated with hemangioma in Chinese layer hens

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Avian leukosis virus subgroup J (ALV-J) preferentially induces myeloid leukosis (ML) in meat-type birds. Since 2008, many clinical cases of hemangioma rather than ML have frequently been reported in association with ALV-J infection in Chinese layer flocks.</p> <p>Results</p> <p>Three ALV-J strains associated with hemangioma were isolated and their proviral genomic sequences were determined. The three isolates, JL093-1, SD09DP03 and HLJ09MDJ-1, were 7,670, 7,670, and 7,633 nt in length. Their gag and pol genes were well conserved, with identities of 94.5-98.6% and 97.1-99.5%, respectively, with other ALV-J strains at the amino acid level (aa), while the env genes of the three isolates shared a higher aa identity with the env genes of other hemangioma strains than with those of ML strains. Interestingly, two novel 19-bp insertions in the U3 region in the LTR and 5' UTR, most likely derived from other retroviruses, were found in all the three isolates, thereby separately introducing one E2BP binding site in the U3 region in the LTR and RNA polymerase II transcription factor IIB and core promoter motif ten elements in the 5' UTR. Meanwhile, two binding sites in the U3 LTRs of the three isolates for NFAP-1 and AIB REP1 were lost, and a 1-base deletion in the E element of the 3' UTR of JL093-1 and SD09DP03 introduced a binding site for c-Ets-1. In addition to the changes listed above, the rTM of the 3' UTR was deleted in each of the three isolates.</p> <p>Conclusion</p> <p>Our study is the first to discovery the coexistence of two novel insertions in the U3 region in the LTR and the 5' UTR of ALV-J associated with hemangioma symptoms, and the transcriptional regulatory elements introduced should be taken into consideration in the occurrence of hemangioma.</p

    PA-X is a virulence factor in avian H9N2 influenza virus

    Get PDF
    H9N2 influenza viruses have been circulating worldwide in multiple avian species, and regularly infect pigs and humans. Recently, a novel protein, PA-X, produced from the PA gene by ribosomal frameshifting, was demonstrated to be an antivirulence factor in pandemic 2009 H1N1, highly pathogenic avian H5N1 and 1918 H1N1 viruses. However, a similar role of PA-X in the prevalent H9N2 avian influenza viruses has not been established. In this study, we compared the virulence and cytopathogenicity of H9N2 WT virus and H9N2 PA-X-deficient virus. Loss of PA-X in H9N2 virus reduced apoptosis and had a marginal effect on progeny virus output in human pulmonary adenocarcinoma (A549) cells. Without PA-X, PA was less able to suppress co-expressed GFP in human embryonic kidney 293T cells. Furthermore, absence of PA-X in H9N2 virus attenuated viral pathogenicity in mice, which showed no mortality, reduced progeny virus production, mild-to-normal lung histopathology, and dampened proinflammatory cytokine and chemokine response. Therefore, unlike previously reported H1N1 and H5N1 viruses, we show that PA-X protein in H9N2 virus is a pro-virulence factor in facilitating viral pathogenicity and that the pro- or antivirulence role of PA-X in influenza viruses is virus strain-dependent

    Prevailing PA mutation K356R in avian influenza H9N2 virus increases mammalian replication and pathogenicity

    Get PDF
    Adaptation of the viral polymerase complex comprising PB1, PB2, and PA is necessary for efficient influenza A virus replication in new host species. We found that PA mutation K356R (PA-K356R) has become predominant since 2014 in avian H9N2 viruses in China as with seasonal human H1N1 viruses. The same mutation is also found in most human isolates of emergent avian H7N9 and H10N8 viruses whose six internal gene segments are derived from the H9N2 virus. We further demonstrated the mammalian adaptive functionality of the PA-K356R mutation. Avian H9N2 virus with the PA-K356R mutation in human A549 cells showed increased nuclear accumulation of PA and increased viral polymerase activity that resulted in elevated levels of viral transcription and virus output. The same mutant virus in mice also enhanced virus replication and caused lethal infection. In addition, combined mutation of PA-K356R and PB2-E627K, a well-known mammalian adaptive marker, in the H9N2 virus showed further cooperative increases in virus production and severity of infection in vitro and in vivo. In summary, PA-K356R behaves as a novel mammalian tropism mutation, which, along with other mutations such as PB2-E627K, might render avian H9N2 viruses adapted for human infection

    M gene reassortment in H9N2 influenza virus promotes early infection and replication: contribution to rising virus prevalence in chickens in China

    Get PDF
    Segment reassortment and base mutagenesis of influenza A viruses are the primary routes to the rapid evolution of high fitness virus genotypes. We recently described a predominant G57 genotype of avian H9N2 viruses that caused country-wide outbreaks in chickens in China during 2010-2013 which led to the zoonotic emergence of H7N9 viruses. One of the key features of the G57 genotype is the substitution of the earlier BJ/94-like M gene with the G1-like M gene of quail origin. We report here on the functional significance of the G1-like M gene in H9N2 viruses in conferring increased infection severity and infectivity in primary chicken embryonic fibroblasts and chickens. H9N2 virus housing the G1-like M gene, in place of BJ/94-like M gene, showed early surge in viral mRNA and vRNA transcription that were associated with enhanced viral protein production, and with early elevated release of progeny virus comprising largely spherical rather than filamentous virions. Importantly, H9N2 virus with G1-like M gene conferred extrapulmonary virus spread in chickens. Five highly represented signature amino acid residues (37A, 95K, 224N and 242N in M1 protein, and 21G in M2 protein) encoded by the prevalent G1-like M gene were demonstrated as prime contributors to enhanced infectivity. Therefore, the genetic evolution of M gene in H9N2 virus increases reproductive virus fitness, indicating its contribution to rising virus prevalence in chickens in China. Importance We recently described the circulation of a dominant genotype (G57) of H9N2 viruses in country-wide outbreaks in chickens in China, which was responsible through reassortment for the emergence of H7N9 viruses that cause severe human infections. A key feature of the G57 genotype H9N2 virus is the presence of quail origin G1-like M gene which had replaced the earlier BJ/94-like M gene. We found that H9N2 virus with G1-like M gene, but not BJ/94-like M gene, showed early surge in progeny virus production, more severe pathology and extrapulmonary virus spread in chickens. Five highly represented amino acid residues in M1 and M2 proteins derived from G1-like M gene were shown to mediate enhanced virus infectivity. These observations enhance what we currently know about the roles of reassortment and mutations on virus fitness and have implications for assessing the potential of variant influenza viruses that can cause rising prevalence in chickens

    Horizontal gene transfer in plants

    Get PDF
    Horizontal gene transfer (HGT) describes the transmission of genetic material across species boundaries. HGT often occurs in microbic and eukaryotic genomes. However, the pathways by which HGTs occur in multicellular eukaryotes, especially in plants, are not well understood. We systematically summarized more than ten possible pathways for HGT. The intimate contact which frequently occurs in parasitism, symbiosis, pathogen, epiphyte, entophyte, and grafting interactions could promote HGTs between two species. Besides these direct transfer methods, genes can be exchanged with a vector as a bridge: possible vectors include pollen, fungi, bacteria, viruses, viroids, plasmids, transposons, and insects. HGT, especially when involving horizontal transfer of transposable elements, is recognized as a significant force propelling genomic variation and biological innovation, playing an important functional and evolutionary role in both eukaryotic and prokaryotic genomes. We proposed possible mechanisms by which HGTs can occur, which is useful in understanding the genetic information exchange among distant species or distant cellular components

    Highly pathogenic avian influenza H5N6 viruses exhibit enhanced affinity for human type sialic acid receptor and in-contact transmission in model ferrets

    Get PDF
    Since May 2014, highly pathogenic avian influenza H5N6 virus has been reported to cause six severe human infections three of which were fatal. The biological properties of this subtype, in particular its relative pathogenicity and transmissibility in mammals, are not known. We characterized the virus receptor-binding affinity, pathogenicity, and transmissibility in mice and ferrets of four H5N6 isolates derived from waterfowl in China from 2013-2014. All four H5N6 viruses have acquired a binding affinity for human-like SA alpha 2,6Gal-linked receptor to be able to attach to human tracheal epithelial and alveolar cells. The emergent H5N6 viruses, which share high sequence similarity with the human isolate A/Guangzhou/39715/2014 (H5N6), were fully infective and highly transmissible by direct contact in ferrets but showed less-severe pathogenicity than the parental H5N1 virus. The present results highlight the threat of emergent H5N6 viruses to poultry and human health and the need to closely track their continual adaptation in humans

    Effects on Physicochemical and Dissolution Characteristics of Lentinus edodes Stem Powder by Jet Milling

    Get PDF
    In order to increase the utilization rate of shiitake mushroom by-products, the shiitake mushroom stem was crushed after superfine grinding with a jet mill, with coarse powder and 40 mesh powder as the control. The effect of jet milling on the physicochemical properties of shiitake mushroom stem powder and the dissolution amount of functional components represented by ergosterol and polysaccharides were studied. The cumulative dissolution rate of ergosterol and polysaccharides was fitted by the Weibull model. The results showed that after superfine grinding by jet milling, the average particle size (D50) of powder decreased to 3.21 μm, bulk density, tap density and L* value increased from 0.15 g/mL to 0.25 g/mL, 0.23 g/mL to 0.42 g/mL, 65.31 to 73.49, respectively. The superfine powder fluidity, water holding capacity and swelling capacity were significantly enhanced (P<0.05). The cumulative dissolution 50% of the time (T50) of ergosterol and polysaccharide in superfine powder was reduced by 2.56 min and 8.14 min, respectively, compared with coarse powder. And cumulative dissolution rate at 45 min (Q45) increased by 10.88% and 19.15%, respectively. The powder properties and the dissolution rate of the functional ingredients were improved, after the jet milling to treat the shiitake mushroom stem, which was conducive to the comprehensive utilization of shiitake mushroom by-products
    • …
    corecore