47 research outputs found
Resting-State Default Mode Network Related Functional Connectivity Is Associated With Sustained Attention Deficits in Schizophrenia and Obsessive-Compulsive Disorder
Background: Previous studies have indicated the resting-state default mode network (DMN) related connectivity serving as predictor of sustained attention performance in healthy people. Interestingly, sustained attention deficits as well as DMN-involved functional connectivity (FC) alterations are common in both patients with schizophrenia (SCZ) and with obsessive-compulsive disorder (OCD). Thus, the present study was designed to investigate whether the DMN related resting-state connectivity alterations in these two psychiatric disorders were neural correlates of their sustained attention impairments.Methods: The study included 17 SCZ patients, 35 OCD patients and 36 healthy controls (HCs). Sustained attention to response task was adopted to assess the sustained attention. Resting-state scan was administrated and seed-based whole-brain FC analyses were performed with seeds located in classical DMN regions including bilateral medial prefrontal cortex (mPFC) and posterior cingulate cortex (PCC).Results: Both SCZ and OCD patients had poorer sustained attention than HCs. Sustained attention deficits in OCD was negatively correlated with their impaired FC of right mPFC-left superior frontal gyrus (SFG) within DMN, and that in SCZ was significantly correlated with their altered FC of left mPFC-bilateral anterior cingulate cortex (ACC) which indicated interaction between DMN and salience network. In addition, the FC between left mPFC and right parietal lobe indicating the interaction between DMN and frontal-parietal network was correlated with sustained attention in both SCZ and OCD.Conclusion: These findings suggest the importance of DMN-involved connectivity, both within and between networks in underlying sustained attention deficits in OCD and SCZ. Results further support the potential of resting-state FC in complementing information for cognitive deficits in psychiatric disorders
A Companion Cell–Dominant and Developmentally Regulated H3K4 Demethylase Controls Flowering Time in Arabidopsis via the Repression of FLC Expression
Flowering time relies on the integration of intrinsic developmental cues and environmental signals. FLC and its downstream target FT are key players in the floral transition in Arabidopsis. Here, we characterized the expression pattern and function of JMJ18, a novel JmjC domain-containing histone H3K4 demethylase gene in Arabidopsis. JMJ18 was dominantly expressed in companion cells; its temporal expression pattern was negatively and positively correlated with that of FLC and FT, respectively, during vegetative development. Mutations in JMJ18 resulted in a weak late-flowering phenotype, while JMJ18 overexpressors exhibited an obvious early-flowering phenotype. JMJ18 displayed demethylase activity toward H3K4me3 and H3K4me2, and bound FLC chromatin directly. The levels of H3K4me3 and H3K4me2 in chromatins of FLC clade genes and the expression of FLC clade genes were reduced, whereas FT expression was induced and the protein expression of FT increased in JMJ18 overexpressor lines. The early-flowering phenotype caused by the overexpression of JMJ18 was mainly dependent on the functional FT. Our findings suggest that the companion cell–dominant and developmentally regulated JMJ18 binds directly to the FLC locus, reducing the level of H3K4 methylation in FLC chromatin and repressing the expression of FLC, thereby promoting the expression of FT in companion cells to stimulate flowering
Some characteristics of fusion neutrons produced by deuterium in loads of Z-pinch devices
The fusion neutrons from Z-pinch devices are observed and studied for last fifty years. Many experimental and theoretical papers were published in this field. Some problems are still under discussion for example, a thermal or beam-target origin of neutrons, mechanism of acceleration of high-energy electrons and ions, correlation of hard x-rays with neutrons, a reason for asymmetry of emitted particles and radiation, development of diagnostic methods and interpretation of results. This paper presents an experimental results of neutrons produced at the. implosion of an Al liner onto a CD2 fiber at the 3 MA fast Z-pinch S-300 in RRC Kurchatov Institute in Moscow. The velocity and energy of neutrons in the axial direction were estimated from the temporal position of the maximum of neutron signals at two different distances from the neutron source and the relationship between hard x-rays and neutrons is discussed
Altered connectivity within and between the default mode, central executive, and salience networks in obsessive-compulsive disorder
Background Default mode network (DMN), central executive network (CEN) and salience network (SN) are the three most important intrinsic networks of the human brain. Recent studies emphasized the importance of the "triple-network model" which illustrated the interactions within and between DMN, CEN and SN in the pathophysiology of psychiatric disorders. However, previous studies of obsessive-compulsive disorder (OCD) just explored the altered connectivity within these networks while neglected the coupling between them. Hence, the present study was designed to fill this research gap.</p
Modeling tides and their influence on the circulation in Prince William Sound, Alaska
International audienc