3,359 research outputs found

    Systematic Digitized Treatment of Engineering Line-Diagrams

    Get PDF
    YesIn engineering design, there are many functional relationships which are difficult to express into a simple and exact mathematical formula. Instead they are documented within a form of line graphs (or plot charts or curve diagrams) in engineering handbooks or text books. Because the information in such a form cannot be used directly in the modern computer aided design (CAD) process, it is necessary to find a way to numerically represent the information. In this paper, a data processing system for numerical representation of line graphs in mechanical design is developed, which incorporates the process cycle from the initial data acquisition to the final output of required information. As well as containing the capability for curve fitting through Cubic spline and Neural network techniques, the system also adapts a novel methodology for use in this application: Grey Models. Grey theory have been used in various applications, normally involved with time-series data, and have the characteristic of being able to handle sparse data sets and data forecasting. Two case studies were then utilized to investigate the feasibility of Grey models for curve fitting. Furthermore, comparisons with the other two established techniques show that the accuracy was better than the Cubic spline function method, but slightly less accurate than the Neural network method. These results are highly encouraging and future work to fully investigate the capability of Grey theory, as well as exploiting its sparse data handling capabilities is recommended

    Some integral inequalities on time scales

    Full text link
    In this paper, some new integral inequalities on time scales are presented by using elementarily analytic methods in calculus of time scales.Comment: 8 page

    Empirical study on clique-degree distribution of networks

    Full text link
    The community structure and motif-modular-network hierarchy are of great importance for understanding the relationship between structures and functions. In this paper, we investigate the distribution of clique-degree, which is an extension of degree and can be used to measure the density of cliques in networks. The empirical studies indicate the extensive existence of power-law clique-degree distributions in various real networks, and the power-law exponent decreases with the increasing of clique size.Comment: 9 figures, 4 page

    On the mass relation of a meson nonet

    Get PDF
    It is pointed out that the omission of the effects of the transition between quarkonia or the assumption that the transition between quarkonia is flavor-independent would result in the inconsistent results for the pseudoscalar meson nonet. It is emphasized that the mass relation of the non-ideal mixing meson nonets should incorporate the effects of the flavor-dependent transition between quarkonia. The new mass relations of a meson nonet are presented.Comment: Latex, 10 pages, to appear in Mod. Phys. Lett.

    A study on PDC drill bits quality

    Get PDF
    The quality of innovating PDC (Polycrystalline Diamond Compact) bits materials needs to be determined with accuracy by measuring cutting efficiency and wear rate, both related to the overall mechanical properties. An original approach is developed to encompass cutting efficiency and wear contribution to the overall sample quality. Therefore, a lathe-type test device was used to abrade specific samples from various manufacturers. Post-experiment analyzes are based on models establishing coupled relationships between cutting and friction stresses related to the drag bits excavation mechanism. These models are implemented in order to evaluate cutting efficiency and to estimate wear of the diamond insert. Phase analysis by XRD and finite element simulations were performed to explain the role of physicochemical parameters on the calculated quality factor values. Four main properties of PDC material were studied to explain quality results obtained in this study: cobalt content in samples that characterizes hardness/fracture toughness compromise, undesired phase as tungsten carbide weakening diamond structure, diamond grains sizes and residual stresses distribution affecting abrasion resistance

    Flat Spacetime Vacuum in Loop Quantum Gravity

    Full text link
    We construct a state in the loop quantum gravity theory with zero cosmological constant, which should correspond to the flat spacetime vacuum solution. This is done by defining the loop transform coefficients of a flat connection wavefunction in the holomorphic representation which satisfies all the constraints of quantum General Relativity and it is peaked around the flat space triads. The loop transform coefficients are defined as spin foam state sum invariants of the spin networks embedded in the spatial manifold for the SU(2) quantum group. We also obtain an expression for the vacuum wavefunction in the triad represntation, by defining the corresponding spin networks functional integrals as SU(2) quantum group state sums.Comment: 20 pages, 6 figure
    corecore