6,765 research outputs found

    LHC Signatures of Two-Higgs-Doublets with Fourth Family

    Full text link
    On-going Higgs searches in the light mass window are of vital importance for testing the Higgs mechanism and probing new physics beyond the standard model (SM). The latest ATLAS and CMS searches for the SM Higgs boson at the LHC (7TeV) found some intriguing excesses of events in the \gamma\gamma/VV^* channels (V=Z,W) around the mass-range of 124-126 GeV. We explore a possible explanation of the \gamma\gamma and VV^* signals from the light CP-odd Higgs A^0 or CP-even Higgs h^0 from the general two-Higgs-doublet model with fourth-family fermions. We demonstrate that by including invisible decays of the Higgs boson A^0 or h^0 to fourth-family neutrinos, the predicted \gamma\gamma and VV^* signals can explain the observed new signatures at the LHC, and will be further probed by the forthcoming LHC runs in 2012.Comment: 22pp, 10 Figs, JHEP published version, references adde

    Methods and compositions for modulating gene expression in plants

    Get PDF
    The present invention provides methods and compositions for regulation of gene expression in plants. In particular, the invention provides nucleic acids that can confer tissue specific and constitutive expression to operably linked polynucleotides of interest

    Multi-channel Wireless Networks with Infrastructure Support: Capacity and Delay

    Full text link
    In this paper, we propose a novel multi-channel network with infrastructure support, called an \textit{MC-IS} network, which has not been studied in the literature. To the best of our knowledge, we are the first to study such an \textit{MC-IS} network. Our \textit{MC-IS} network is equipped with a number of infrastructure nodes which can communicate with common nodes using a number of channels where a communication between a common node and an infrastructure node is called an infrastructure communication and a communication between two common nodes is called an ad-hoc communication. Our proposed \textit{MC-IS} network has a number of advantages over three existing conventional networks, namely a single-channel wireless ad hoc network (called an \textit{SC-AH} network), a multi-channel wireless ad hoc network (called an \textit{MC-AH} network) and a single-channel network with infrastructure support (called an \textit{SC-IS} network). In particular, the \textit{network capacity} of our proposed \textit{MC-IS} network is nlogn\sqrt{n \log n} times higher than that of an \textit{SC-AH} network and an \textit{MC-AH} network and the same as that of an \textit{SC-IS} network, where nn is the number of nodes in the network. The \textit{average delay} of our \textit{MC-IS} network is logn/n\sqrt{\log n/n} times lower than that of an \textit{SC-AH} network and an \textit{MC-AH} network, and min(CI,m)\min(C_I,m) times lower than the average delay of an \textit{SC-IS} network, where CIC_I and mm denote the number of channels dedicated for infrastructure communications and the number of interfaces mounted at each infrastructure node, respectively.Comment: 12 pages, 6 figures, 3 table

    On Capacity and Delay of Multi-channel Wireless Networks with Infrastructure Support

    Full text link
    In this paper, we propose a novel multi-channel network with infrastructure support, called an MC-IS network, which has not been studied in the literature. To the best of our knowledge, we are the first to study such an MC-IS network. Our proposed MC-IS network has a number of advantages over three existing conventional networks, namely a single-channel wireless ad hoc network (called an SC-AH network), a multi-channel wireless ad hoc network (called an MC-AH network) and a single-channel network with infrastructure support (called an SC-IS network). In particular, the network capacity of our proposed MC-IS network is nlogn\sqrt{n \log n} times higher than that of an SC-AH network and an MC-AH network and the same as that of an SC-IS network, where nn is the number of nodes in the network. The average delay of our MC-IS network is logn/n\sqrt{\log n/n} times lower than that of an SC-AH network and an MC-AH network, and min{CI,m}\min\{C_I,m\} times lower than the average delay of an SC-IS network, where CIC_I and mm denote the number of channels dedicated for infrastructure communications and the number of interfaces mounted at each infrastructure node, respectively. Our analysis on an MC-IS network equipped with omni-directional antennas only has been extended to an MC-IS network equipped with directional antennas only, which are named as an MC-IS-DA network. We show that an MC-IS-DA network has an even lower delay of c2πθCI\frac{c}{\lfloor \frac{2\pi}{\theta}\rfloor \cdot C_I} compared with an SC-IS network and our MC-IS network. For example, when CI=12C_I=12 and θ=π12\theta=\frac{\pi}{12}, an MC-IS-DA network can further reduce the delay by 24 times lower that of an MC-IS network and reduce the delay by 288 times lower than that of an SC-IS network.Comment: accepted, IEEE Transactions on Vehicular Technology, 201

    Current Situation and Future Development of Activity Theory in China

    Get PDF
    The cultural-historical activity theory was developed by the Russian psychologist Vygotsky and his colleagues in the 1920s and 1930s. Since then, it has been expanded globally and rapidly, particularly during the past 15 years. However, there has been little interaction between the broader international community and China with respect to the development of the theory and its applications in China, which has taken place along a path of its own. This paper aims to examine this development, focusing on 1) the general situation and background of the research, 2) the basic understanding, theoretical construction and unique features of development; 3) the focal areas in and limitations of the application; and 4) idea evolution in terms of different generation theories. At the end of the paper, emerging trends and future prospects of activity theoretical research in China will be suggested and discussed
    corecore